J’ai commencé la réalisation du châssis et du boîtier. J’ai choisi de monter chaque module sur plaquette PCB FR4 pastillée étamée à trous métallisés double face de 5x7x0,16 cm. Disponibles sur Ebay, ces plaquettes sont de bonne qualité, d’un prix abordable achetées par paquet. Elles sont fixées sur le châssis. Je reviendrai plus tard sur sa fabrication. Avec la première version j’ai repris lentement possession d’un domaine que j’avais laissé depuis longtemps (Photo ci-contre L’ Emission et la Réception d’Amateur de Roger A. RAFFIN F3AV 6ème édition 1966).
Fiat lux… A l’écoute des QSO, à l’observation des performances du récepteur, à la lumière de l’expérience acquise je révise chaque module.
Il comprend les éléments suivants:
Le schéma fonctionnel est représenté figure 1. Chaque élément est décrit dans les paragraphes suivants.
La figure 2 ci-dessus montre les 3 premiers éléments du module soumis à LTSPICE. Pour simplifier le schéma, le commutateur a été réduit à la commutation de l’antenne. Le transistor de commande 2N3906 et la clef sont simplement figurés par la source de tension continue V3, ligne appelée TxLine figure 2.
Le dispositif de commutation est entièrement électronique. Il n’a pas changé. Une LED témoin et sa résistance série de 1 KΩ ont été ajoutées sur la ligne Tx_Vcc. Il est construit autour d’un transistor bipolaire PNP 2N3906 et de 3 transistors MOSFET canal N à enrichissement 2N7000. On se reportera utilement à l’article commutation Rx/Tx pour l’examen du schéma et du chronogramme de commutation produit par LTSPICE.
L’antenne est connectée en permanence au récepteur et à l’émetteur. Au repos, le dispositif est en position de réception. A l’entrée, la ligne de commande KEY est connectée à la clef. Cette ligne actionne le transistor 2N3906 monté en commutation. Clef levée, le transistor est coupé, c’est la position de réception, la tension Tx_Vcc = 0 (émetteur coupé), RIT actif, No_MUTE actif . Clef baissée, le transistor conduit, c’est la position d’émission, l’antenne est coupée du récepteur, Tx_Vcc = 12V (émetteur actif), RIT inactif, MUTE actif.
La commutation de l’antenne au récepteur est effectuée par 2 transistors 2N7000 fonctionnant de manière inverse, M1 et M3 figure 2. L’un, M1, est en série sur la ligne d’antenne, l’autre, M3, shunte la ligne d’antenne à la masse. Quand l’un conduit, l’autre est coupé. Ainsi, en réception, le transistor en série laisse passer le signal venant de l’antenne, alors que l’autre transistor est coupé et ne shunte pas le signal. Inversement, en émission, le transistor en série est coupé. Pour palier à toute fuite de signal provenant de l’émetteur, l’autre transistor shunte le résidu de signal vers la masse. C’est un 3ème transistor 2N7000 qui commande l’inversion, M2 figure 2.
En sortie, 3 lignes de commande:
La ligne Tx_Vcc = 0 ou 12V, commande la mise sous tension des étages de l’émetteur, sauf les étages de puissance qui restent constamment sous tension.
La ligne RIT, commande le transistor 2N7000 qui commute l’action du RIT sur le VFO.
La ligne No_MUTE, commande le transistor 2N7000 qui commute l’amplificateur audio sur le moniteur CW.
Une cellule RC introduit, un retard lors du passage d’émission en réception (voir le chronogramme, ligne Tx_Line).
Deux diodes 1N4148 montées tête-bêche, shuntent l’entrée, assurent la protection du transistor suivant contre la HF provenant de l’émetteur. Ce procédé est fort bien expliqué ici.
A l’usage, une commande de gain manuelle est fort utile pour atténuer certaines stations trop puissantes. Le dispositif d’atténuation est construit autour d’un commutateur rotatif 2 circuits 6 positions (parce que j’en avais un comme celui-là) et de 5 atténuateurs en PI. Un atténuateur est formé de 3 résistances, une résistance en série, 2 résistances en shunt. Son entrée et sa sortie sont normalisées à 50 Ω. J’ai utilisé chaque position du commutateur:
Pour calculer les résistances de chaque atténuateur, vous avez le choix. Qui aime le calcul, voici la formule simple qui part de l’atténuation souhaitée.
Soit un atténuateur
ou
Rs résistance d’entrée et de sortie normalisée = 50Ω
Rp résistance shunt = 50(1 + 0,5)/(1 – 0,5 ) = 150Ω
Ri résistance série = 50(1 – 0,5 x 0,5 )/2 x 0,5 = 37,5Ω
Il ne reste plus qu’à utiliser la valeur normalisée la plus proche.
Qui est curieux, voici mon article qui utilise le calculateur LTSPICE.
Qui préfère utiliser un des nombreux calculateurs, en voici un.
Un mot sur la méthode utilisée pour simuler avec LTSPICE l’action du commutateur rotatif de l’atténuateur. La diective table de LTSPICE permet de définir une liste de valeurs munie d’un index.
LTSPICE développe la boucle de programme qui pourrait ressembler à cela :
Nat=0 : initialiser l’ index
Début :
Résistance R6 = Rat1(Nat) = 86k
Résistance R7 = Rat1(Nat) = 86k
Résistance R8 = Rat2(Nat) = 57m
Calculs
Tracé des graphes, …
Nat = Nat+1 : incrémenter l’index du pas de progression
Si Nat <= 5 aller à Début : fin de boucle?
Fin
Remarque, la valeur 0dB qui représente l’absence d’atténuation est portée par les valeurs 86k et 57m qui donnent -1mdB, une valeur infime . En effet, LTSPICE oblige à faire R>0 (résistance non nulle) sous peine d’erreur.
La figure 3 ci-dessous montre le graphe de la résistance d’entrée et celui de l’atténuation en mode réception. La résistance d’entrée se situe autour de 50Ω @ 14MHz. L’atténuation s’étend de -1.8dB à -23dB. La figure 4 représente les mêmes graphes en mode émission. L’atténuation s’étend de -38dB à -60dB.
Le graphe du haut montre l’impédance représentée comme la somme d’une partie réelle et une partie imaginaire : Z = R +jX.
Le graphe du centre montre le module
Ainsi en réception, atténuateur = 0dB @14MHz, Z = 39 – j34 et |Z| = 51Ω.
-j34 représente la réactance capacitive d’un condensateur de 334pF @14MHz.
Télécharger les fichiers de simulation LTspice et tous les schémas.
J’ai utilisé Ansoft Designer SV version 2.2.0. C’est une version limitée pour l’éducation et libre, de ce fameux logiciel. Il offre de nombreuses possibilités pour l’amateur. Si vous voulez un tutoriel en voici un excellent, celui de Gunthard Kraus. Un vrai régal!
Dans le menu Project, choisir Insert Filter Design. Choisir le type de filtre. J’ai choisi Bandpass, Coupled resonator, Chebyshev, Ideal, Capacitiveliy coupled , figure 5 ci-dessus. Dans la fenêtre suivante figure 6, entrer les paramètres du filtre, l’ordre, la fréquence centrale, la largeur de bande (le logiciel calcule lui-même les fréquences fp1 et fp2), les résistances d’entrée et de sortie, une valeur de L réaliste et compatible avec le tore que vous souhaitez utiliser.
En passant à la fenêtre suivante vous obtenez le filtre. Si les valeurs vous conviennent, cliquez sur Terminer, sinon cliquez sur Back et modifiez.
En pratique, les inductances L=484nH seront obtenues en bobinant 11 tours de fil de 1mm (parce que j’en ai récupéré dans une vieille alimentation HS de PC) sur tore poudre de fer T50-6 (Al = 4nH/n2). Le calcul est simple n = √(484/4) = 11. Mini Tore calculateur de Wilfried Burmeister DL5SWB ou encore Dieter Gentzow W8DIZ le font pour vous. Les condensateurs de 190pF sont obtenus en mettant en parallèle un
condensateur de 150pF et un ajustable de 60pF qui permettra de régler le filtre.
Le filtre soumis à LTSPICE fait aussi bonne figure ci-dessous.
Télécharger les fichiers de simulation LTspice et tous les schémas.
Amplificateur émetteur commun à transistor VHF UHF NPN MPSH10 : Gain β maxi = 60 à Ic= 4.0 mA, Vce= 10V.
Fréquence : bande des 14MHz.
Gain le l’étage limité à 15 dB maximum.
Alimentation: 13,8V régulé (celle du transceiver).
Le transistor, figure 9, est monté en émetteur commun avec résistance d’émetteur Re1+Re, en partie découplée. Re1 non découplée diminue le gain. Sa polarisation en tension est obtenue par la résistance de base Rb prise après la résistance de collecteur Rc régulant ainsi le courant. La résistance de collecteur Rc=51Ω fixe essentiellement la résistance de sortie.
Dans ces conditions on pose et on calcule :
Tension d’alimentation Vcc = 12V
Courant de collecteur de repos Ic = 7mA
Tension de collecteur Vc = 12V – (7mA * 51Ω) = 11.6V
Tension Vce = 9.6V ce qui donne tension d’émetteur Ve = 2V
Résistance d’émetteur Re1+Re = 2V/0.007mA = 285Ω, j’opte pour les valeurs normalisée Re1=4.7Ω et Re=270Ω
Tension de base Vb = Ve + Vbe = 2V + 0,7V = 2,7V
Tension Vcb = 9V et Ib=Ic/39 = 0.179mA et Rb=9/0.179 = 50KΩ, j’opte pour la valeur normalisée Rb=47KΩ
La valeur 39 = BetaDC obtenue avec le paramètre du gain BF=60 et le courant Ib est fournie dans le fichier log par LTSPICE. La figure 10 montre comment on peut obtenir avec LTSPICE la courbe de variation du gain β en fonction de Ib et Vce.
Note: la directive ako de LTSPICE permet de redéfinir le modèle du transistor et de changer ses paramètres (voir schéma).
La figure 11 indique les valeurs des courants et tension du circuit calculés par LTSPICE.
La figure 12 montre que la résistance de sortie reste autour de 50Ω dans la bande qui nous intéresse.
La figure 13 montre la résistance d’entrée en fonction de la fréquence, selon 2 valeurs du paramètre BF. On note une petite variation: Re=280Ω @14MHz si BF=60. Re=310Ω @14MHz si BF=100.
Le filtre passe bande est associé à l’amplificateur. Le graphe du bas, figure 14, montre que le gain S21 se situe autour de 15db@14MHz. L »analyse est faite avec BF=60 et BF=100. On ne constate pratiquement pas de différence. Le graphe du haut montre les facteurs de stabilité (Rollett stability factor). Pour obtenir kfactor et B1 il faut mettre dans le fichier plot.defs, les 2 fonctions ci-dessous. Pour ce faire, dans la fenêtre active de LTSPICE, placer vous sur le graphe obtenu (fichier raw), dans le menu Plot Settings, choisir Edit Plot Defs File, copier, coller les formules, fermer la fenêtre, quitter LTSPICE pour que les nouvelles fonctions soient prises en compte.
.func kfactor (S11,S21,S12,S22) {(1-abs(S11(v2))*abs(S11(v2))-abs(S22(v2))*(S22(v2))+abs(S11(v2)*S22(v2)-S12(v2)*S21(v2))*abs(S11(v2)*S22(v2)-S12(v2)*S21(v2)))/(2*abs(S12(v2))*abs(S21(v2)))}
.func B1 (S11,S22) { 1 – abs(S11(v2))**2 – abs(S22(v2))**2 – {sdelta (S11,S21,S12,S22)}**2 }
Télécharger les fichiers de simulation LTspice et tous les schémas.
Le circuit complet du module RF, figure 14, est présenté en mode réception. Le générateur en entrée produit une tension crête de 10mV @50Ω, figurant ainsi un signal de 1uW @14MHz soit -30dBm sur l’antenne. En radio, sur 50 Ohms, dBm = 10*log(P) avec P en milliwatt. Où P = 0.010V*0.010V*1000/(2*50Ω), il vient 10*log(0.001)=-30dBm. Cela peut être calculé simplement avec mini dB calculator de DL5SWB (silent key). En sortie nous obtenons un signal de 25mV crête @50Ω soit 6.3uW.
La figure 15, montre le circuit en mode émission. Comme le montre le graphe, le circuit n’est pas étanche à la HF. Pour ce faire je simule l’application d’un signal de 5.8W@14MHz soit une tension crête de 24V @50Ω.
Télécharger les fichiers de simulation LTspice et tous les schémas.
Il est temps de passer à la pratique. Comme le montre la figure 16, ci-dessous, le circuit tient sur une plaque PCB FR4 pastillée étamée à trous métallisés double face de 5x7x0,16 cm fixée sur le châssis. Les condensateurs du filtre passe-bande sont du type céramique NP0. Il y avait de la place, aussi ai-je préféré les composants traversants aux SMD.
Les résistances de l’atténuateur sont soudées directement sur le commutateur rotatif fixé sur le panneau avant, voir figure 17. La réalisation du châssis fera l’objet d’un article.
« La théorie, c’est quand on sait tout et que rien ne fonctionne. La pratique, c’est quand tout fonctionne et que personne ne sait pourquoi. » Albert EINSTEIN (1879-1955).
Oscilloscope HAMEG HM 312-8.
Sonde passive HAMEG HZ36 en position x10, 10MΩ, bande passante 100MHz.
Générateur HF maison 14 MHz.
Le générateur injecte sur l’entrée antenne du transceiver un signal Vp=50mV, mesuré à l’oscilloscope, dans la bande des 14MHz .
La sonde mesure le signal de sortie de l’amplificateur RF.
Réglage de l’oscilloscope Y = 10mV/cm, X = 0.5us/cm, X-MAGN x5. La figure 18 montre le signal qui a les caractéristiques suivantes: Vp = 3,0cm*10*10mV/cm = 300mV, T = (0,7cm/5)*0,5us/cm = 0,07us, F = 1/T = 14,286MHz.
L’amplification en tension Av=300mV/50mV = 6 soit Adb = 20log6= 15,6db @50Ω.
LES MONTAGES AMPLIFICATEURS FONDAMENTAUX
A TRANSISTORS BIPOLAIRES – Philippe Roux – IUT de Bordeaux
Ansoft DESIGNER SV 2.0 Tutorial for Beginners using Special Projects by Gunthard Kraus DG8GB
ANSYS
Index des articles de la catégorie Transceiver
Côte d’Opale
Dieu que notre planète est belle, que mon pays est beau, que ma région est belle! En cette fin de journée magnifique de début mars, le soleil se couche embrasant la côte d’Opale, les dernières grandes falaises de l’Europe occidentale. La Manche, paisible comme un lac, roule de petites vagues. Mon épouse et moi parcourons à grandes bouffées d’iode, le sentier du littoral de Boulogne sur Mer à Wimereux, jusqu’à la tombée de la nuit… C’est d’ici que le 27 Mars 1899, Marconi réussit la liaison radio télégraphique entre DOUVRES (South Foreland) et WIMEREUX .
« Hâtez-vous lentement, et, sans perdre courage,
Vingt fois sur le métier remettez votre ouvrage … » Nicolas BOILEAU, L’Art poétique (1674).
Le premier VFO (V1 et sa petite modification V2) que j’ai construit, dérive un peu trop à mon goût. Je reprends entièrement sa conception.
La figure 1 montre les blocs qui composent le VFO: l’oscillateur, le buffer, l’amplificateur, l’amplificateur pour le fréquencemètre. Le bloc tune permet de faire varier la fréquence de l’oscillateur, le bloc RIT, actif en réception, permet de décaler légèrement la fréquence de l’oscillateur.
La conception de l’oscillateur figure 2, s’inspire largement des articles remarquables de F5LVG, Olivier ERNST que j’ai lus et relus plusieurs fois, notamment ceux traitant des oscillateurs et des bobinages.
Type : oscillateur Colpitts
Fréquence : 3,76 à 3,86 MHz, les 100 premiers kHz dédié à la CW (IF = 10.240MHz).
Transistor UHF/VHF NPN MPSH10 : Fréquence de transition Ft = 600 MHz, Gain Bo = 60, Cbc = 0,7 pF, Cbe: 21 pF (à 2 mA), Fréquence de coupure Fc = Ft/Bo = 600/60 = 10 MHz, ( F5LVG utilise le BFR91A qui est bien meilleur Ft = 5 GHz, Bo =40 (min), Cbc = 0,6 pF, Cbe = 2,5 pF (à 2 mA), Fc = 125 MHz , je n’ai pas ce composant en stock, j’ai utilisé ce que j’avais) .
Accord par varicap: diode zener 1N4756.
RIT par varicap LED commandé par transistor NMOS 2N7000 fonctionnant en interrupteur.
Alimentation: 5V régulé extérieure au VFO.
Fosc = 4,11 MHz (F= Fosc + IF= 4,11 +10,240 = 14,350MHz
Cr = 50.Fosc MHz = 50*4,11=205pF
Ce = 100.Fosc MHz = 100*4,11 = 411pF
Cmax = 6000/FMHz = 6000/4,11 = 1459 pF
Cmax/2 = 729 pF
Pour obtenir une oscillation et une dérive minimum il faut que la capacité d’accord Caccord soit la plus grande possible et comprise entre Ce et Cmax/2 soit : 411 pF < Caccord < 729 pF. Je choisis donc C1 = C2 = 1000pF, Ca = 80pF (voir schéma figure 2). Ce qui donne (C1 en série avec C2) // Ca = (1000/2) + 80 = 580pF. Il me reste une marge de variation possible avec les diodes varicap de 100 pF environ.
Avec Caccord = 500pF à 700pF on en déduit L compris entre 2,1uH et 3uH. Je choisis L=2,8 uH.
La figure 3 indique les valeurs des courants et tension du circuit. Pour le MPSH10 le courant Ic est fixé à 1,7 mA et le gain Bo (appelé BetaDC) du modèle = 100.
La sortie de l’oscillateur est chargée par une résistance de 5 KΩ qui représente la résistance d’entrée du Buffer. La figure 4 montre les courbes des tensions et courants principaux du circuit, tracées en faisant varier 2 paramètres: Wipertune et Wiperrit, pour connaître les bornes de la bande de fréquence avec RIT minimum et maximum. Nous obtenons dans le fichier SPICE Error Log le résultat de la mesure:
Measurement: f[m]
step 100/(t2-t1)
1 3.75089e+006
2 3.85194e+006
3 3.7484e+006
4 3.84954e+006
La partie de la bande balayée correspond bien aux 100 premiers KHz de la bande des 20 mètres. Le RIT décale la fréquence de 2,5 KHz environ.
Télécharger les fichiers de simulation LTspice et tous les schémas.
J’ai adapté la méthode de F5LVG pour réaliser un circuit oscillant interchangeable (Figure 5). Le circuit oscillant (hors varicap) est monté sur une chute de plaque veroboard bakélite à bandes cuivrées au pas de 2.54mm . Trois contacts femelles de connecteurs Dupont sont soudés sur les bandes. Les condensateurs CMS NPo, le condensateur ajustable et la bobine sont soudés sur les bandes. L’ensemble est bien rigide. Il est destiné à être enfiché sur 3 broches au pas de 2,54 mm soudées sur le circuit imprimé. La bobine est constituée de 13 tours de fil de câblage de diamètre 0,5 mm, bobiné en vrac sur un tube de 21 mm. Deux petits bracelets de fil torsadé (chute de fil de câblage téléphone) maintiennent la bobine serrée.
La fréquence d’oscillation du circuit a été mesurée avec le vintage grid-dip Heathkit HD1250. Il m’indique F entre 3,7 MHz et 3,8 MHz.
L’ étage suivant l’oscillateur a été taillé sur mesure autour d’un 2n3904. Il vaut mieux savoir à qui j’ai à faire.
Pour fixer le point de fonctionnement, avec LTSPICE, j’ai commencé par tracer la courbe caractéristique d’entrée et la courbe caractéristique de transfert du transistor (figure 6).
La mesure simple du gain de mes 2n3904 effectuée au multimètre donne hfe = 125 à 150, je choisis 125. C’est le paramètre BF (Forward active current gain) qui indique le gain du transistor dans le modèle LTSPICE. Comme BF = 300 dans ce modèle, j’ai fixé ponctuellement BF = 125 en utilisant la directive alias AKO (A Kind Of) de LTSPICE.
Pour simplifier, j’ai choisi d’utiliser la même tension d’alimentation de 5V pour chaque étage du VFO.
Le buffer, figure 7, présente en entrée une haute impédance à l’oscillateur et une basse impédance en sortie à l’amplificateur suivant.
Type : collecteur commun (émetteur suiveur).
Tension d’alimentation Vcc : 5V.
Polarisation par pont de base.
Résistance d’entrée : haute > 4 KΩ.
Résistance de sortie : basse < 500Ω @ 4MHz.
Les résistances du pont de pont de base influent sur la résistance d’entrée, j’opte donc pour un faible courant de base et par suite un courant de collecteur faible. Je choisis Ic = 1,5 mA.
Pour une excursion maximum du signal, je fixe la tension d’émetteur Ve = Vcc/2 = 5/2 = 2,5 V.
Il vient résistance d’émetteur RE = 2,5/1,5 = 1,66 KΩ. Je n’ai pas en stock de résistance 1,66 KΩ la plus proche est 1,5 KΩ, j’opte donc pour RE = 1,5 KΩ.
Il vient Ic = 2,5/1,5= 1,67 mA. La tension de base Vb = Ve + Vce = 2,5 + 0,65 = 3,15 V. Sur le graphe figure 6 ou par le calcul on obtient le courant de base Ib = Ic/β = 1,67/125 = 13,36 uA. Pour un fonctionnement correct, le courant dans le pont de base Ip>>Ib, je choisis Ip = 10.Ib = 10 x 13,36 = 133 uA.
Nous pouvons déduire la valeur des 2 résistances du pont de base RB2 =3,15/133 = 24 KΩ et RB1 = (5 – 3,15)/(133 + 13) = 12 KΩ. J’ai en stock 12 KΩ et 27 KΩ, j’opte donc pour ces 2 valeurs.
La simulation LTSPICE (fichier SPICE Error Log) en régime continu figure 8, montre Ic = 1,77 mA, Ib = 14 uA, Vce = 2,32 V d’où Ve = 5 – 2,32 = 2,68V valeurs proches de celles que j’ai fixées.
Dans un tel montage la résistance d’entrée attendue est re = RB//(rbe+(β+1)Réqui) (cf Philippe Roux amplification_bipolaire.pdf).
RB = RB1//BR2 = 12//27 = 8,3 KΩ.
rbe = β.VT/Ic = 125 x 26 / 1,67 = 1,946 KΩ, avec VT = 26 mV à 25°C.
Réqui= rce//Re//RL.
rce = (Vce+|VA|)/Ic avec VA tension de Early du 2N3904 =-100V, rce=(2,5 + 100)/1,67 = 61,4 KΩ.
Réqui = 61,4//1,5//0,050 = 0,048 KΩ.
re = 8,3//(1,946+(125+1)0,048 ) = 4 KΩ.
Le condensateur de liaison en sortie agit comme un filtre passe haut. La valeur choisie 100 pF intervient dans le calcul de Réqui. A 4 MHz sa valeur Xc = 400 Ω n’est pas négigeable. La résistance diminue avec la fréquence comme le montre l’ analyse en régime variable de LTSPICE figure 10.
La sortie du buffer est chargée par une résistance de 50Ω. Le graphe de la figure 9 montre la variation des signaux autour du point de fonctionnement.
Le graphe de la figure 10 montre la résistance d’entrée re = 7,2 KΩ @ 4 MHz.
Le graphe de la figure 11 montre la résistance de sortie rs = 400Ω @ 4 MHz.
Le signal issu du buffer n’est pas assez puissant pour alimenter le mélangeur à diode. Il me faut environ 7 à 13 dBm sur 50 Ω, soit environ 5 à 17 mW. Une petite partie du courant variable est aussi nécessaire pour alimenter le fréquencemètre. Pour cette raison, j’ai choisi de construire un amplificateur dédié au VFO proprement dit pour alimenter le mélangeur et un amplificateur pour alimenter le fréquencemètre.
Télécharger les fichiers de simulation LTspice et tous les schémas.
J’ai choisi de commencer par celui-ci pour pouvoir passer ensuite à un premier montage du VFO afin de vérifier sa stabilité. Il serait inutile d’aller plus loin si je constatais une dérive trop importante du signal.
Type: émetteur commun.
Tension d’alimentation Vcc : 5V.
Polarisation par pont de base et résistance d’émetteur.
Résistance d’entrée : haute > 4 KΩ.
Résistance de sortie : basse < 500Ω @ 4MHz.
L’examen de la caractéristique d’entrée et de la caractéristique de transfert me permet de choisir Ib = 24 uA et Ic = 3 mA. En choisissant RE = 100Ω, il vient la tension de base Vb = Vbe + VRE = 0,68 + 100*0,003 = 0,98V. L’intensité du pont de base Ip = 10Ib = 10*24 = 240 uA. On en déduit les résistances du pont de base:
RB2 = Vb/Ip = 0,98/0,240 = 4,083 KΩ = 3,9 KΩ valeur standard la plus proche,
RB1 = (Vcc – Vb)/(Ip + Ib) = (5 – 0,98)/(0,24+0,024) = 15,227 KΩ = 15 KΩ valeur standard la plus proche.
En choisissant la tension de collecteur Vc = 5/2 = 2,5 V pour obtenir l’excursion maximum du signal, il vient la résistance de collecteur Rc= 2,5/3 = 833 Ω = 820 Ω valeur standard la plus proche.
La figure 13 montre le résultat de la simulation LTSPICE (fichier SPICE Error Log) en régime continu. Les valeurs obtenues sont très proches de celles que j’ai calculées: Ic = 2,79 mA, Ib = 22,1 uA, Vce = 2,43 V.
La sortie de l’amplificateur est chargée par une résistance de 50Ω. Le graphe de la figure 14 montre la variation des signaux autour du point de fonctionnement.
Comme je l’ai indiqué, j’ai réalisé une première partie du VFO comprenant les blocs oscillateur, buffer, amplificateur du fréquencemètre.
Le circuit est câblé sur une plaquette PCB FR4 pastillée étamée à trous métallisés double face de 5x7x0,16 cm ( figure 15 et figure 16).
On trouve maintenant sur Ebay des modèles de ce type d’excellente qualité pour 45 centimes environ en les achetant par paquet de 5 ou plus.
L’espacement entre les pastilles permet de souder les petits composant CMS 1206 et 0805.
Des connecteurs sont placés en fin de chaque étage pour permettre les mesures.
Comme on peut le voir, il reste encore beaucoup de place pour y loger les autres blocs du circuit.
Télécharger les fichiers de simulation LTspice et tous les schémas.
La figure 17 montre le dispositif de test.
Le VFO est simplement posé sur la table de travail.
La boîte de délicieuses sardines à l’huile du Portugal contient maintenant une alimentation stabilisée LM317 très bien filtrée, ajustable dont la sortie est réglée sur 5V au moyen d’un simple petit cavalier. Son entrée est reliée à l’alimentation stabilisée principale de 13,8V, sa sortie est reliée au VFO à tester.
Le circuit oscillant a été enfiché sur ses 3 broches.
Oscilloscope HAMEG HM 312-8.
Sonde passive HAMEG HZ36 en position x10, 10MΩ, bande passante 100MHz.
Fréquencemètre à microcontrôleur PIC maison.
La sonde passive de l’oscilloscope est connectée à la sortie de l’amplificateur du fréquencemètre (figure 17). La mesure est réalisée à vide. Réglage de l’oscilloscope Y = 50mV/cm, X = 0.5us/cm. La figure 18 montre une belle sinusoïde symétrique qui a les caractéristiques suivantes: Vp = 1,8cm*10*50mV/cm = 900mV, T = 0,5cm*0,5us/cm = 0,25us, F = 1/T = 4MHz.
Première observation: en suivant les calculs indiqués par F5LVG, l’oscillateur fonctionne du premier coup.
Le VFO est simplement posé sur la table de travail, aucun boîtier ne le protège, il est donc exposé aux variations de l’air ambiant de la pièce. La sortie du VFO est reliée au fréquencemètre. Le fréquencemètre est programmé pour ajouter 10240000 Hz à la fréquence lue, ce qui veut dire que la fréquence réelle du VFO se situe autour de 3,811 MHz , valeur très proche de celle observée lors de la simulation LTSPICE. Le test a duré 6h. L’enregistrement de la fréquence a commencé après un temps de chauffage de 15mn.
La figure 19 montre le résultat obtenu.
Description du tableau:
Analyse de la courbe
La courbe est croissante.
On observe 3 zones:
Deuxième observation: la dérive devient acceptable au bout de 25 mn de fonctionnement.
Télécharger les fichiers de simulation LTspice.
Il s’agit de monter la commande du circuit oscillant et d’en vérifier l’effet sur la stabilité de l’oscillateur. Comme le montre le schéma figure 2, la fréquence de l’oscillateur peut être modifiée par une diode varicap (VCO). Un potentiomètre 10 tours applique la tension de commande de 0 à 5 Volts à la diode varicap. J’utilise une diode zener 1 Watt 47 Volts du type 1N4756. Comme l’indique F5LVG l’alimentation de la varicap est faite par le point froid pour éviter d’amortir le circuit oscillant par le circuit d’alimentation.
Aucune protection particulière pour le VFO qui est simplement posé sur la table de travail. Le circuit est mis sous tension. On amène la fréquence de l’oscillateur dans la bande de travail aux environs de 14 MHz. La mesure de la fréquence commence après un temps de chauffage de 15 mn. La figure 20 montre le résultat obtenu.
Analyse de la courbe
La courbe est croissante.
On observe 3 zones:
Première observation: la dérive de fréquence pendant les 30 premières minutes est plus importante que celle observée dans la partie 1.
Deuxième observation: la dérive devient acceptable au bout de 40 mn de fonctionnement.
Le VFO est placé simplement dans une boîte de sardines non fermée comme le montre la photo ci-contre figure 21. Le circuit est mis sous tension. On amène la fréquence de l’oscillateur en haut de la bande de travail aux environs de 14.105 MHz. La mesure de la fréquence commence après un temps de chauffage de 15 mn. La figure 22 montre le résultat obtenu.
Analyse de la courbe
Le test a duré 8 heures. La température ambiante Ta de la pièce n’est pas stable, elle croît au fur et à mesure de l’expérience: 19°C =< Ta <= 22°C. On constate une très grande amélioration de la stabilité. La courbe est croissante, constante puis décroissante.
On observe 3 zones:
Première observation: le VFO placé dans un simple boîtier non fermé isolé de son alimentation, la dérive de fréquence est minime, le VFO est quasi stable.
Deuxième observation: en calant à l’aide du potentiomètre le VFO sur sa fréquence la plus basse, je lis F=13 965 952 Hz, la bande balayée = 14 105 424 – 13 965 952 ≈ 140 Khz résultat très proche de ce que prévoyait le modèle simulation LTSPICE. Le modèle est fiable.
Troisième observation: la diode zener ne dégrade pas les performances du VFO et s’avère simple et économique en diode varicap.
Quatrième observation: Le bobinage à air en vrac en évitant l’utilisation d’un tore par toujours disponible, donne un excellent résulat.
Conclusion: il est possible d’obtenir un VFO stable dans cette bande de fréquences avec des composants courants.
Le RIT permet de décaler la fréquence de réception de quelques dizaines voire quelques centaines de Hz autour de la fréquence d’émission. J’ai remanié légèrement le schéma de la figure 2 qui me paraissait un peu confus sur le traitement du RIT. Au final, le nouveau schéma est représenté figure 23.
Finalement, j’ai opté pour une diode zener 1N4756 utilisée en varicap. Elle est placée en parallèle sur le circuit d’accord et alimentée du côté froid comme sa soeur utilisée pour l’accord principal. Sa tension inverse est commandée par un potentiomètre dont la plage de variation est elle-même commandée par le transistor MOS FET à canal N 2N7000 fonctionnant en commutation.
En émission, la tension de grille du 2N7000 est égale à 12V, saturant le transistor qui se comporte comme un interrupteur fermé. Les résistances placées en série avec le drain et avec la source sont égales, fixant la tension du potentiomètre à Vcc/2 soit 5V/2=2,5V. A cette tension correspond une valeur de la capacité de la diode zener, constante sur toute la bande, en parallèle à la capacité d’accord.
En réception, la tension grille du 2N7000 est mise à 0V, bloquant le transistor qui se comporte comme un interrupteur ouvert. Le courant passe alors par le réseau résistif formé par la résistance de drain, la résistance de source, deux résistances égales R2 et R6 placées chacune de part et d’autre du potentiomètre et le potentiomètre lui-même. Les résistances R2 et R6 fixent les limites de la plage de variation de la tension du potentiomètre et par conséquent de la capacité variable de la diode 1N4756. Nous pouvons facilement estimer les limites de cette plage. Les résistances de drain et de sources ont une valeur négligeable au regard des autres résistances, nous calculons 5V(82/(82+82+50)) = 1,92V et 5V-1,92V= 3,08V. La capacité de la diode pourra varier autour de la tension inverse 2,5V+-0,58V. Toutefois, rien n’est parfait, la courbe de variation de la capacité de la diode en fonction de sa tension inverse n’est pas linéaire. Ce qui a pour conséquence de ne pas donner une variation de fréquence symétrique autour de la fréquence d’émission. Mais j’en resterai là pour l’instant cela me suffit amplement.
Les conditions de test sont identiques au test 4. On amène la fréquence de l’oscillateur en haut de la bande de travail aux environs de 14.175 MHz. La mesure de la fréquence commence après un temps de chauffage de 15 mn. La figure 24 montre le résultat obtenu.
Analyse de la courbe
Le test a duré 6 heures. La température ambiante Ta de la pièce = 26°C. On ne constate pas de dégradation de la stabilité. La courbe est croissante. La dérive totale de fréquence est de 990Hz dont près de la moitié, la première demi-heure de fonctionnement.
Fort de ces premières expériences, je décidais de reprendre le circuit d’accord. Quel bonheur ce circuit d’accord amovible ! J’enroulais un nouveau bobinage selon le même principe que le premier pour obtenir une inductance plus faible. La bobine est constituée maintenant de 11 tours de fil de câblage de diamètre 0,5 mm, bobiné en vrac sur un tube de 21 mm. J’y soudais 2 condensateurs de 1000 pF au polystyrène montés en série soit 510 pF mesuré au capacimètre (condensateur de qualité acheté chez Radiospares). Un passage au vintage grid dip HEATHKIT HD-1250 montre un dip à 4Mhz. Ce qui, d’emblée, me rassure. Le circuit est placé sur le VFO, les capacités des diodes varicap sont réglées au maximum pour se caler en début de bande, le compteur marque 14,327120 MHz soit en réalité 4,087120 MHz (pas mal non!). J’avance maintenant à tâtons. Je soude tour à tour 3 condensateurs céramique ordinaires pour atteindre la fréquence attendue 3,760 MHz. Voici ce que j’obtiens :
Je remplace maintenant ce dernier par 2 condensateurs de qualité montés en parallèle: 1 condensateur NP0 de 100 pF (provenance W8DIZ), 1 condensateur ajustable céramique MURATA 4,2 – 20 pF (provenance Radiospares). Avec le trimmer je cale le VFO en début de bande. Parfait !
Avant de passer aux essais je veux en savoir un peu plus sur les valeurs LC de mon circuit d’accord. Rien de plus simple avec un peu de math !
Nous pouvons écrire les égalités:
Lω1 = 1/C1ω1 (1)
Lω2 = 1/C2ω2 (2)
dans lesquelles:
ω1 = 2πf1
ω2 = 2πf2
Posons (1)/(2), il vient:
Lω1/Lω2 = C2ω2 / C1ω1
en simplifiant: f1/f2 = C2f2 / C1f1
ou f12/f2 2 = C2 / C1
Utilisons les valeurs relevées au cours de l’expérience:
f1= 4,087120 MHz
C1= ?
f2= 3,750496 MHz
C2= C1 + 110 pF
Il vient:
f12/f2 2 = (C1 + 110 pF) / C1 = 1 + (110 pF/C1 )
Soit:
C1 = 110 pF /( f12/f2 2 - 1 ) = 586 pF.
Comme initialement nous avons posé 2 condensateurs polystyrène en série d’une valeur de 510 pF il est possible d’estimer que la somme des capacités parasites et des diodes varicap = 586 – 510 = 76 pF. Avec (1) nous calculons aussi L = 2,59 uH. Ces informations sont précieuses.
Le VFO est mis sous tension, réglé en début de bande. J’attends 15 mn de chauffage. Je mesure 14,002160 MHz. Ici plus besoin de graphe! Le VFO ne bouge pas d’un iota pendant 2 heures. Après 3 heures de fonctionnement je note 14,002144 MHz, soit une dérive de -16 Hz en 3 heures!
Je constate que l’étendue de la bande a diminué. Elle est maintenant de 50 KHz. Ce qui me satisfait pour l’écoute de la CW. J’ obtiens un VFO parfaitement stable.
Au vu de cet excellent résultat je peux achever la réalisation de son amplificateur. Ci-contre, figure 25, le schéma. Il doit fournir 7 dBm sur 50 Ω au mélangeur à diodes. Le bruit du VFO va se mélanger au signal de la bande reçue. Outre la recherche de la stabilité, Il faut aussi chercher à limiter ce bruit. Iulian Rosu YO3DAC – VA3IUL dans son VFO Vackar à très faible bruit de phase, utilise des BD135, BD136 avec un faible courant Ic de l’ordre de 6 à 9 mA pour Icmax de 60 à 90 mA. Cette idée m’a paru séduisante d’autant que j’ai quelques BD135 en stock. J’ai repris son schéma que j’ai adapté à ma tension d’alimentation pour obtenir le même courant Ic. Le transformateur de sortie et le filtre ont été adaptés à la fréquence de mon VFO. Le transformateur en calculant les réactances, le filtre en utilisant AADE Filter design.
Dans le montage original Vb = Vcc/2 = 8/2 = 4 V. Je conserve le même rapport Vb = 12/2 = 6 V. Le courant collecteur ne change pas Ic = 6mA. La résistance d’émetteur découplée Re doit augmenter de (6-4)/6 = 0,333 KΩ soit Re = 470 + 333 = 803 Ω soit 820 Ω valeur normalisée la plus proche. La simulation LTSPICE (fichier SPICE Error Log) en régime continu figure 26, montre Ic = 6,14 mA, Ib = 68,7 uA, Vce = 6,06 V.
Calcul du transformateur de sortie d’ après les données du montage original:
En rapportant ces valeurs à ma fréquence d’utilisation:
La sortie de l’amplificateur est chargée par une résistance de 50Ω. Le graphe de la figure 27 montre la variation des signaux autour du point de fonctionnement. Une tension Vp = 100 mV en entrée devrait permettre d’obtenir Vp= 710 mV en sortie soit les 7 dBm attendus.
Télécharger les fichiers de simulation LTspice et tous les schémas.
Il est du type elliptique appelé aussi filtre de Cauer. Il a été calculé à l’aide de AADE filter design. La figure 28 montre ses caractéristiques. La figure 29 montre le résultat de la simulation LTSPICE. Dans la bande qui nous intéresse, les pertes par réflexion S11 se situent en dessous de -10 dB avec un creux à -27 dB à 3,84 MHz indiquant une bonne adaptation d’impédance. Le paramètre de transfert S21 montre une légère ondulation de -1 dB à 0 dB.
Le circuit de sortie formé par le transformateur, son condensateur d’accord et le filtre passe-bas sont montés sur un morceau de plaquette amovible du type veroboard à bandes cuivrées munie de connecteurs Dupont (voir plus haut circuit LC amovible du VFO). Cette plaquette est enfichée sur des picots soudés à la plaque de base du VFO. Chaque bobine est réalisée sur tore T50-2 avec du fil de cuivre émaillé de 0.4 à 0.6 mm récupéré sur une ancienne alimentation de PC. Le secondaire du transformateur est réalisé avec un bout de fil de cuivre isolé récupéré sur un câble téléphonique et enroulé sur le primaire. Le calcul peut être fait simplement en utilisant mini tore calculateur de DL5SWB.
Une résistance de 50Ω est connectée à la sortie de l’amplificateur. La sonde passive de l’oscilloscope est connectée en position x10 à la sortie de l’amplificateur. Réglage de l’oscilloscope Y = 50mV/cm, X = 0.5us/cm. La figure 30 montre une belle sinusoïde symétrique qui a les caractéristiques suivantes: Vp = 1,45cm*10*50mV/cm = 725mV, T = 0,5cm*0,5us/cm = 0,25us, F = 1/T = 4MHz.
J’obtiens les 7dBm attendus.
Chaque circuit étant constitué d’un module soudé sur une carte mère, l’échange du circuit est très facile. L’ancien module VFO est démonté, le nouveau est placé sur la carte mère. Il est relié à l’entrée du mélangeur à diodes avec un morceau de câble RG174. Le récepteur est mis sous tension. Je me cale au hasard sur CT1HMN que je reçois fort et clair et qui reste un long moment sur la même fréquence à réaliser plusieurs QSO avec d’autres stations. Parfait, la fréquence ne dérive pas.
LES MONTAGES AMPLIFICATEURS FONDAMENTAUX
A TRANSISTORS BIPOLAIRES – Philippe Roux – IUT de Bordeaux
STABILITE DES OSCILLATEURS – F5LVG, Olivier ERNST
Very Low Phase Noise Vackar VFO for HF Transceivers – YO3DAC / VA3IUL, Iulian ROSU
Index des articles de la catégorie Transceiver