F8EOZ » T50-2 http://www.f8eoz.com Informatique - Electronique - Ham radio Thu, 11 May 2017 15:37:43 +0000 fr-FR hourly 1 http://wordpress.org/?v=3.5 Transceiver CW 20 m – Amplificateur de puissance RF power amplifier http://www.f8eoz.com/?p=2821 http://www.f8eoz.com/?p=2821#comments Fri, 22 Nov 2013 15:22:02 +0000 admin http://www.f8eoz.com/?p=2821 Vita brevis, ars longa. L’année s’achève déjà. J’arrive au dernier étage de mon transceiver. Je me suis orienté a priori vers l’utilisation des transistors de commutation MOSFET qui sont utilisés en commutation rapide de haute puissance. Le modèle IRF510, l’un des plus utilisés en QRP, est disponible pour moins de 1 euro. Pour quelques euros il est possible de se construire un PA QRP. Le net foisonne d’exemples d’ amplificateur de puissance RF. En reproduire un serait certes un bon exercice de soudure mais me laisserait sur ma faim. Je veux en savoir un peu plus sur ces composants et faire ma propre expérience.

Un excellent document de NA5N, Paul Harden, traite des amplificateurs MOSFET en classe C,D,E et F. Il m’a servi de guide principal pour réaliser cet article. Au préalable, un peu de théorie très utile avec les documents de Joël Redoutey F6CSX et Philippe Roux.

1. Cahier des charges:

  • un seul transistor MOSFET IRF510,
  • QRP, 2W à 5W,
  • filtre passe-bande séparé.

2. Caractéristiques du MOSFET IRF510

Le transistor IRF510 est du type canal N à enrichissement. C’est un dispositif qui contrôle un courant au moyen d’un tension. Autrement dit, l’intensité du courant de drain dépendra de la tension de grille-source.

Il faut lui appliquer une certaine tension Vgs positive pour obtenir un courant de drain Id significatif. Tant que la tension de commande n’atteint pas ce seuil Vt, le courant de drain reste quasiment nul. Au delà de la tension de seui Vt, le courant de drain Id suit approximativement de manière linéaire la tension grille-source Vgs. Au delà d’une valeur de saturation Vdsat le courant de drain n’augmente plus.

Il s’agit d’obtenir un fonctionnement correct et optimal de l’amplificateur. La puissance demandée à l’amplificateur entraîne un échauffement du composant. Un choix approximatif du point de fonctionnement entraînera son claquage ou une déformation du signal.

Tracer les courbes caractéristiques permet de faire connaissance avec notre transistor.

2.1. Caractéristique de sortie

Le schéma figure 1 ci-dessous montre le circuit de simulation qui permet de tracer la caractéristique de sortie Id = f(Vds)|Vgs paramètre.

Figure 1: IRF510 - Caractéristique de sortie

Figure 1: IRF510 – Caractéristique de sortie

La figure 2 ci-dessous, montre la courbe obtenue. La tension Vgs varie de 4,5V à 8V au pas de 0,5V. La tension Vds varie de 0 à 14V au pas de 1V. Ces valeurs ont été choisies dans la plage de fonctionnement de l’amplificateur.

Figure 2: IRF510 - Graphe de la caractéristique de sortie

Figure 2: IRF510 – Graphe de la caractéristique de sortie

Download  Télécharger les fichiers de simulation LTspice.

2.2. Caractéristique de transfert

Le schéma figure 3 ci-dessous montre le circuit de simulation qui permet de tracer la caractéristique de transfert Id = f(Vgs)|Vds constant.

Figure 3: IRF510 - Caractéristique de transfert

Figure 3: IRF510 – Caractéristique de transfert

La figure 4 ci-dessous, montre la courbe obtenue. La tension Vgs varie de 3V à 8V au pas de 1V. La tension Vds = 13.8V est constante. Ces valeurs ont été choisies dans la plage de fonctionnement de l’amplificateur.

Figure 4: IRF510 - Graphe de la caractéristique de transfert

Figure 4: IRF510 – Graphe de la caractéristique de transfert

Download  Télécharger les fichiers de simulation LTspice.

2.3. Analyse

La puissance commandée est remarquable, avec une tension Vgs = 6V et une tension Vds=12V nous avons un courant de drain-source de 4A, ce qui donne une puissance de 12 x 4 = 48W au delà de la limite thermique de 45W indiquée dans la datasheet. Dans cette région notre composant ne survivrait pas.

La région linéaire est courte.

La tension de seuil Vt ≈ 3,8V.

La transconductance g = ΔId/ΔVg ≈ 1 à 2A/V.

3. Analyse en régime continu

Le schéma figure 5 ci-dessous, montre le circuit de simulation LTspice.

Figure 5: PA - Simulation LTspice en régime continu

Figure 5: PA – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues :

V(in):    0            voltage
V(a):     3.7          voltage
V(out):   6.9e-017     voltage
V(vgate): 3.7          voltage
V(d):     13.8         voltage
V(g):     3.7          voltage
V(vdd):   13.8         voltage
I(C11):   6.486e-016   device_current
I(C9):    1.38e-018    device_current
I(C7):    1.63947e-038 device_current
I(C6):    1.518e-038   device_current
I(C4):    3.03606e-038 device_current
I(C10):  -1.38e-018    device_current
I(C8):    1.38e-018    device_current
I(C5):    6.486e-016   device_current
I(C3):    3.7e-017     device_current
I(C2):    3.7e-019     device_current
I(C1):    3.7e-019     device_current
I(L5):    4.44089e-011 device_current
I(L4):    1.38e-018    device_current
I(L3):   -1.38e-018    device_current
I(L2):   -1.38e-018    device_current
I(L1):   -4.46143e-011 device_current
I(R3):   -0.00037      device_current
I(R2):    4.44089e-017 device_current
I(R1):   -4.7581e-017  device_current
I(Rload): 1.38e-018    device_current
I(V3):   -0.00037      device_current
I(V1):   -4.36557e-011 device_current
I(V2):    3.7e-019     device_current
Id(M1):   1.19247e-010 device_current
Ig(M1):  -8.84454e-011 device_current
Is(M1):  -3.0802e-011  device_current

Download  Télécharger les fichiers de simulation LTspice.

Le schéma figure 6 ci-dessous, montre le circuit simplifié en régime continu.
Tous les condensateurs sont remplacés par des circuits ouverts.
Toutes les inductances sont remplacées par des courts-circuits.
On note que:

  • le courant Ig est nul,
  • le courant Id est nul,
  • le transistor est polarisé à la limite du seuil de conduction.
Figure 6: PA en régime continu

Figure 6: PA en régime continu

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

4. Analyse en régime variable

Le schéma figure 7 ci-dessous, montre le circuit simplifié en régime variable.
La tension continue Vdd en régime variable se comporte comme un court-circuit.
La résistance R3 est shuntée par son condensateur de découplage.
Le transformateur de sortie est formé des 2 bobines torsadées, fortement couplées L1 = L2 en série dont le point milieu est relié au drain. Le rapport de transformation n = 1:2 et le rapport d’impédance 1:4.

Figure 7: PA - En régime variable

Figure 7: PA – En régime variable

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

4.1. Graphe des tensions et courants

Le schéma figure 8 ci-dessous, montre le circuit de simulation LTspice.

Figure 8: PA - Simulation LTspice en régime variable

Figure 8: PA – Simulation LTspice en régime variable

La figure 9 ci-dessous, montre le graphe des courants et tensions obtenu avec une tension d’entrée Vin = 4Vpp à 14MHz. Cette tension est la tension réelle mesurée qui est fourni par le driver décrit dans l’article précédent. La tension de grille Vg = 3,7V règle le transistor au seuil de conduction. Le graphe vert représente la courbe de variation de la puissance instantanée p = u * i dans la charge résistive pure de 50 Ω. Le courant et la tension sont en phase. L’amplitude de la tension de sortie Vout = 12V. L’amplitude du courant dans la charge IRload = 0.21A. Le wattmètre indiquerait environ (12/√2).(0.21/√2) = 1,25W = 2,5W/2.

Figure 9: PA - Graphe des courants et tensions

Figure 9: PA – Graphe des courants et tensions

Download  Télécharger les fichiers de simulation LTspice.

5. Réalisation

5.1. Schéma

La figure 10 ci-dessous montre le schéma du PA avec le filtre de sortie. La tension de grille est obtenue avec un régulateur 5V et une résistance ajustable qui permet de prélever une fraction de cette tension.

Figure 10: Schéma du PA avec son filtre

Figure 10: Schéma du PA avec son filtre

Download  Télécharger les fichiers Kicad.

5.2. Bobinages

J’ai utilisé des tores T50-2  T50-6 FT50-43 que j’avais en stock, achetés chez kits and parts.

Transformateur L1 et L2

Il est réalisé avec du fil de cuivre émaillé de 0,7 mm récupéré dans une alimentation de PC hors d’usage. Deux fils de 20 cm torsadés à raison d’une torsion par cm. Répartir uniformément les spires. Très important, la sortie d’une bobine est reliée à l’entrée de l’autre. On comprend mieux en se reportant au schéma simplifié (analyse en régime variable) ci-dessus, les 2 bobines sont ainsi branchées en série et le courant circule dans le même sens.

Filtre L3 et L4

Il est réalisé avec 20cm de fil de cuivre émaillé de 0,7 mm récupéré dans une alimentation de PC hors d’usage. Répartir uniformément les spires.

Transformateur L5
Il est réalisé avec du fil de cuivre émaillé de 0,3 mm récupéré dans le culot d’une lampe fluorescente. Le culot de ces lampes contient quelques composants dont le précieux bobinage. Vous pouvez en savoir plus ici  ou . Attention au démontage, ne pas briser le tube de verre, certaines contiennent du mercure. Le bobinage est maintenu à l’aide d’une bande autocollante récupérée sur un tore d’une alimentation de PC.

5.3. Charge fictive (antenne fictive)

J’ai soudé en parallèle 10 vintage résistances au carbone non inductive de 470Ω 2W.

5.4. Circuit imprimé

Le PA est câblé sur une plaque d’époxy de 53x53mm. Le filtre est câblé sur une plaque de 53x20mm. Les plaques sont enduites entièrement et copieusement au feutre noir BIC Marking ONYX permanent. Les îlots sont tracés avec une pointe à tracer. Après gravure au perchlorure de fer et nettoyage, le circuit est étamé avec de la pâte à étamer Castotin sp 5423 acheté dans un magasin de bricolage. La pâte est étalée à l’aide d’un pinceau sur le circuit. Inutile d’en mettre beaucoup. Elle est chauffée avec un décapeur thermique. Ne pas chauffer trop longtemps. Dès que le circuit est couvert, arrêter. La photo 1 ci-dessous, montre le résultat obtenu. On remarque que la finesse du tracé permet de souder les minuscules composants CMS 0805 et 1206 entre chaque îlot. On note aussi la différence d’étamage avec les premiers circuits du DRIVER et du MIXER étamés avec de la soudure au fer chaud. Le transistor IRF510 est fixé sur un radiateur de bonne taille. La dissipation thermique peut lui sauver la vie! Le bloc est placé à côté du DRIVER et de l’antenne. La ligne Vdd  est reliée à l’alimentation 13,8V, l’entrée du PA est reliée et la sortie du DRIVER, la sortie du PA est reliée au filtre, la sortie du filtre est reliée pour l’instant à une charge fictive de 50Ω.

Photo 1: Circuit imprimé du PA

Photo 1: Circuit imprimé du PA

6. Test

6.1. Mesure des tensions continues smoke test

Avant câblage du transistor IRF510, le circuit est mis sous tension pour régler la tension de seuil à 2,5V. Pour ce faire, la résistance ajustable est placée à mi-course. Pour l’instant ce réglage n’est pas modifié. Après mise hors tension, le transistor est ensuite câblé. Mettre sous tension. Vérifier les tensions grille Vg=2.5V et drain Vd=13.8V.

6.2. Dispositif

La sortie du filtre est connectée uniquement à la charge fictive de 50Ω.
Tension Vg=2.5V. Compte tenu de la dispersion des caractéristiques de l’IRF510 je me tiens pour l’instant à cette valeur.

6.3. Instruments de mesure

Oscilloscope HAMEG HM 312-8.
Sonde passive HAMEG HZ36 en position x10, 10MΩ, bande passante 100MHz.
Multimètre numérique VICHY 9808 10MΩ.
Sonde HF maison pour le multimètre, construite sur le modèle N5ESE’s Ballpoint RF Probe.
Fréquencemètre à microcontrôleur PIC  maison.

6.3. Résultat

Signal d’entrée
Avec l’oscilloscope, échelle Y=0,1 V/cm, sonde x10, échelle X=0.5 us/cm, loupe x5, la photo 2 ci-dessous, montre le signal en entrée Vin ≈ 3.8 Vpp.
La fréquence F mesurée avec le fréquencemètre ≈ 14,020 MHz.

Photo 2: PA- Signal d'entrée provenant du DRIVER

Photo 2: PA- Signal d’entrée provenant du DRIVER

Signal de sortie
Avec l’oscilloscope, échelle Y=1 V/cm, sonde x10, échelle X=0.5 us/cm, loupe x5, la photo 3 ci-dessous, montre le signal en sortie sur la charge fictive de 50Ω, Vout ≈ 29 Vpp. L’amplitude de Vout=29/2=14.5V. La mesure effectuée avec ma sonde HF sur le multimètre indique Vout ≈ 12,7VRMS valeur un peu supérieure.
La fréquence F mesurée avec le fréquencemètre ≈ 14,020 MHz.
Le wattmètre devrait indiquer une puissance de (14,5*14,5)/(50*2) ≈ 2 W. En radio, sur 50 Ohms, dBm = 10 x log P avec P en milliwatt. Avec la puissance mesurée, il vient 10 log 2000 = 33dBm. Cela peut être calculé simplement avec mini dB calculator de DL5SWB. Je garde pour l’instant cette valeur.

Photo 3: PA- Signal de sortie sur la charge fictive

Photo 3: PA- Signal de sortie sur la charge fictive

Références
The Handyman’s Guide to MOSFET Class D/E/F amplifiers – Part 1

The Handyman’s Guide to MOSFET Class D/E/F amplifiers – Part 2
Radiocommunications – Amplificateurs RF de puissance – F6CSX Joël Redoutey
LES TRANSISTORS A EFFET DE CHAMP MOS – F6CSX Joël Redoutey
TRANSISTORS A EFFET DE CHAMP DE TYPE MOS – Philippe Roux – IUT de Bordeaux

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=2821 0
Transceiver CW 20 m – VFO – Partie 3 http://www.f8eoz.com/?p=1187 http://www.f8eoz.com/?p=1187#comments Thu, 31 May 2012 10:39:10 +0000 admin http://www.f8eoz.com/?p=1187 Filtre passe-bas
Le circuit de sortie de l’amplificateur du VFO est un filtre passe-bas en pi qui adapte aussi l’impédance de sortie à la valeur standard de 50 ohms.

Calcul du filtre
Pour réaliser le filtre, je me suis appuyé sur l’excellente étude de Richard Harris G3OTK disponible sur sur le site ITCHEN VALLEY Radio club G0IVR. Il traite dans 9 documents Part1 à Part 9, tous les aspects de la réalisation des filtres d’une manière claire avec des exemples pratiques.

Simulation
Sur cette base, j’ai construit un modèle de simulation qui, entièrement paramétrable avec LTspiceIV de LINEAR TECHNOLOGY, montre les différentes étapes de la réalisation du filtre.

Le modèle montre les 3 étapes de la conception du filtre :
1° le filtre avec valeurs normalisées à 1 ohms, 1 rad/s ,
2° le filtre avec impédance d’entrée choisie, l’impédance de sortie étant égale à celle d’entrée,
3° le filtre final avec impédance de sortie adaptée avec le théorème de Barlett.


Paramètres
Les paramètres sont présentés dans l’ordre d’utilisation.

1- Filtre avec valeurs normalisées à 1 ohms, 1 rad/s.
La table 1 du document Band pass filter design Part 1. Band pass filters from first principles Richard Harris G3OTK donne les paramètres G1, G2, G3 pour chaque type de courbe de réponse. G1 correspond à la capacité 1, G2 à l’inductance, G3 à la capacité 2 du filtre.
Les lignes issues de la table 1 sont reproduites dans le modèle sous forme de commentaire ou de directive. Choisir la courbe de réponse en cochant en directive la ligne .PARAM de cette courbe, par exemple la ligne Butterworth, les autres sont cochées en commentaires.

Values for three section low pass filter normalised to 1 Ohm & 1 rad/sec
.PARAM g1=1.0000 g2=2.0000 g3=1.0000 ;Butterworth
.PARAM g1=1.0316 g2=1.1474 g3=1.0316 ;Chebychev 01dB ripple
.PARAM g1=2.0237 g2=0.9941 g3=2.0237 ;Chebychev 0.1dB ripple
.PARAM g1=2.196 g2=0.9674 g3=0.3364 ;Gaussian

Choisir ensuite la bande passante FBw. Dans le cas d’un filtre passe-bas, la bande passante est égale à la fréquence de coupure, par exemple 4,5 MHz. Le paramètre RT=1, résistance terminale ne doit pas être modifié.

.PARAM RT=1
.PARAM FBw=4.5Meg

Les autres paramètres, inductance L1, capacités C1 et C2 sont obtenus par calcul.

.PARAM L1 = g2 *RT / ( wFunc(FBw))
.PARAM C1 = g1 / (wFunc(FBw)* RT)
.PARAM C2 = g3 / (wFunc(FBw)* RT)

Remarque:
LTSPICE permet d’écrire des fonctions qui sont utilisées dans les calculs. Par exemple la fonction wFunc calcule la vitesse angulaire ω à la fréquence f:

.func wFunc(f) {2*pi*f}

2- Filtre avec impédance d’entrée choisie, l’impédance de sortie étant égale à celle d’entrée.
Choisir ensuite la résistance d’entrée R3, par exemple 130 ohms. Les autres paramètres ne sont pas être modifiés. Les valeurs de l’inductance et des capacités sont obtenues par calcul.

.PARAM R3=130

3- Filtre final avec impédance de sortie adaptée avec le théorème de Barlett.
Choisir enfin la résistance de sortie R6, par exemple 50 ohms. Les autres paramètres ne sont pas être modifiés. Les valeurs de l’inductance et des capacités sont obtenues par calcul.

.PARAM R6=50

Résultat simulation 1: analyse petit signal AC
Elle calcule automatiquement le point de polarisation du circuit pour ensuite établir le schéma équivalent petit signal de tous les éléments non linéaires du circuit (diodes, transistors bipolaires,etc…). Elle visualise la courbe de réponse, amplitude et phase des différentes grandeurs du circuit en fonction de la fréquence lorsqu’un signal d’amplitude infinitésimale est appliqué au circuit.

Diagramme de Bode

Les courbes des filtres 1 V(out1) et 2 V(Out2) se superposent. La courbe du filtre 3 V(Out3) subit une translation vers le bas. L’adaptation par le théorème de Barlett introduit une perte d’insertion de 5 dB.

Résultat des calculs dans le fichier .log:

outmax1: MAX(mag(v(out1)))=(-0.00507865dB,0°) FROM 1e+006 TO 1e+008
f1fall3db: mag(v(out1))=outmax1/sqrt(2) AT 4.50025e+006
outmax2: MAX(mag(v(out2)))=(-0.00055803dB,0°) FROM 1e+006 TO 1e+008
f2fall3db: mag(v(out2))=outmax2/sqrt(2) AT 4.50018e+006
outmax3: MAX(mag(v(out3)))=(-5.10602dB,0°) FROM 1e+006 TO 1e+008
f3fall3db: mag(v(out3))=outmax3/sqrt(2) AT 4.50018e+006
out376: mag(v(out3))=(-6.37754dB,0°) at 3.76e+006
out411: mag(v(out3))=(-7.09339dB,0°) at 4.11e+006
out450: mag(v(out3))=(-8.1158dB,0°) at 4.5e+006
out8: mag(v(out3))=(-20.2335dB,0°) at 8e+006
out12: mag(v(out3))=(-30.675dB,0°) at 1.2e+007
out16: mag(v(out3))=(-38.162dB,0°) at 1.6e+007

Notes:
f1fall3db : fréquence de coupure du filtre 1 à -3 dB = 4,5 MHz,
f2fall3db : fréquence de coupure du filtre 2 à -3 dB = 4,5 MHz,
f3fall3db : fréquence de coupure du filtre 3 à -3 dB = 4,5 MHz,
outmax3 : perte d’insertion du filtre 3 = -5,1 dB,
les résultats suivants indiquent l’atténuation du filtre 3 à différentes fréquences.

Simulation 2 : analyse transitoire
Elle calcule les variables du circuit en fonction du temps. Une tension sinusoïdale Vpp = 2 V peak to peak et F = 4,5 MHz est injectée à l’entrée du circuit. On obtient la valeur de l’inductance et des capacités du filtre:

Filtre 1
l1_1: l1=7.07355e-008
c1_1: c1=3.53678e-008
c2_1: c2=3.53678e-008
Filtre 2
r3_2: r3=130
r4_2: r4=130
l2_2: l2=9.19562e-006
c3_2: c3=2.7206e-010
c4_2: c4=2.7206e-010
Filtre 3
r5_3: r5=130
r6_3: r6=50
l3_3: l3=6.3662e-006
c5_3: c5=2.7206e-010
c6_3: c6=7.07355e-010

Notes:
Les résultats du filtre 3 sont utilisés pour fabrriquer le filtre:
fréquence de coupure  à -3 dB = 4,5 MHz,
l3_3 : 6,4 uH,
c5_3 : 272 pF = 270 pF,
c6_3 : 707 pF = 680 pF + 27 pF.

Réalisation
Les condensateurs sont du type NP0. L’inductance L = 6,4 uH, calculée avec mini ring core calculator est faite de 36 tours de fil de Cu émaillé de 0,5 mm bobinés sur tore T50-2 acheté chez kits and parts.

Télécharger les fichiers LTspice de la simulation .

Index des articles de la catégorie Transceiver

 

]]>
http://www.f8eoz.com/?feed=rss2&p=1187 0
Transceiver CW 20 m – VFO – Partie 1 http://www.f8eoz.com/?p=1064 http://www.f8eoz.com/?p=1064#comments Mon, 21 May 2012 11:20:02 +0000 admin http://www.f8eoz.com/?p=1064 Il existe sur le net de nombreux exemples de VFO. La réalisation de ce VFO, des plus classiques, m’a demandé cependant, beaucoup d’essais et mises au point. Je commence par en fixer le cahier des charges:
- oscillateur Clapp,
- variation du circuit d’accord par diode varicap (varactor)
- plage de fonctionnement de 3,760MHz à 4,110MHz, pour couvrir la bande des 14 MHz avec une fréquence intermédiaire de 10,240 MHz,
- amplificateur délivrant 15 dBm sur 50 ohms, pour alimenter un mélangeur à diodes,
- filtre passe bas pour éliminer les harmoniques,
- amplificateur destiné à alimenter mon fréquencemètre dans un premier temps, puis, dans le futur, un micro contrôleur intégré au transceiver.

Qui se traduit sous la forme du schéma fonctionnel suivant:

Ci-dessous le schéma complet du circuit. Chaque partie du circuit est décrite ensuite.

Télécharger les fichiers Kicad du schéma .

L’oscillateur
J’ai opté pour l’oscillateur Clapp, connu pour sa stabilité et aussi pour la facilité de fabrication de la bobine sans prise intermédiaire. Facilité apparente toutefois, la mise au point de l’oscillateur m’a permis de vérifier la loi de Murphy étendue aux oscillateurs: « un amplificateur oscille, un oscillateur n’oscille pas » et de connaître les limites de la simulation. J’ai construit de superbes oscillateurs qui, en simulation, fonctionnaient parfaitement avec toutes les combinaisons LC. Satisfait du montage virtuel, je prenais avec enthousiasme le fer à souder pour le monter. Je me hâtai de brancher l’oscilloscope. Hélas! l’écran restait désespérément vide. Il me fallait remettre tout à plat. Après maintes recherches sur le net, j’ai trouvé une excellente synthèse sur le sujet réalisée par Olivier ERNST F5LVG intitulée « STABILITE DES OSCILLATEURS« .

Pour obtenir un oscillateur stable qui oscille, il faut que la capacité d’accord soit supérieure à Ce et inférieure à Cmax/2.
(1) Ce pF = Fo * 100
(2) Cmax pF = 6000 / Fo
(3) Cmax/2 = 3000 / Fo
Calculs:
(4) Fo = limite supérieure de la bande = 4,11 MHz
(5) Ce = 4,11 * 100 = 411 pF
(6) Cmax/2 = 3000 / 4,11 = 730 pF
(7) Résultat:  capacité d’accord pF = ] 411 ; 730 [

Figure 1

Cas de l’oscillateur Clapp figure 1.
F5LVG indique que les deux capacités du Clapp doivent, du fait de leur mise en série, avoir une valeur double de la valeur calculée par la théorie. Comme base de départ, les valeurs des 2 capacités principales peuvent être égales à Cmax/2 chacune, la valeur de la capacité en série avec la bobine étant égale au quart de cette valeur y compris le CV. Partant de ce calcul, je prends les valeurs normalisées E12 supérieures les plus proches soit C1 = C2 = 820 pF pour les deux capacités en série et Ct = 820 pF / 4 = 220 pF pour la capacité en série avec la bobine.
Calcul de L:
(8) A la résonance Lw = 1/Cw ou L = 1/Cw2
(9) w2 = (2πFo)2
(10) C = 1/[1/Ct + 1/C1 + 1/C2]
(11) Ct = 220 pF = capacité totale utilisée pour caler et balayer l’intervalle de fréquence F MHz=[3,76 ; 4,11]
(12) C = 147 pF
(13) Résultat L = 10 uH

L’excellente synthèse sur le VFO « Calcul et réalisation d’un VFO Part1 et Part2″ de F6EVT indique la valeur des réactances capacitives des capacités C1 et C2, soit Xc1 = Xc2 = 45 ohms pour le Colpitts et le Clapp. Partant de là, effectuons les calculs:
(14) Xc = 1/Cw
(15) C = 1/wXc
(16) w = 2πFo
(17) C = 861 pF = C1 = C2 (figure 1) résultat proche du calcul précédent.

Si vous êtes allergique au calcul mental ou à la règle à calcul, vous pouvez utiliser ce calculateur.

Après un passage par la simulation SPICE (voir détail ci-dessous), je suis parti sur cette base pour monter l’oscillateur.  Je connecte l’oscilloscope. Eurêka! Miracle de la technique! Une superbe sinusoïde se dessine sur le graticule.

Simulation
Pour que ce travail soit réutilisable, j’ai conçu un modèle de simulation entièrement paramétrable avec LTspiceIV de LINEAR TECHNOLOGY. Voici le modèle de simulation:


Paramètres principaux à entrer:
.PARAM Fmax=4.11Meg : Fréquence haute d’oscillation Fo
.PARAM XL=258 : Réactance inductive de la bobine L à Fo (voir figure 1)
.PARAM Xca=47 : Réactance capacitive du condensateur C0 et C1 à Fo (voir figure 1)
.PARAM Xct=176 : Réactance capacitive du condensateur Ct en série avec L à Fo (voir figure 1)
.STEP PARAM Ctune 0p 100p 10p : variation du condensateur variable en // sur Ct

Notes:
(1) Paramètre Xct: puisque Ct = Ca/4 vous pouvez indiquer Xct = 4*Xca
(2) Paramètre Ctune: représente le CV ou la diode varicap.

Simulation : analyse transitoire
Elle calcule les variables du circuit en fonction du temps. Le résultat est enregistré dans le fichier .log . Au cours de cette analyse on calcule:
(1) la fréquence obtenue F MHz = [4,178; 3,729]pour chaque valeur de Ctune pF = [0; 100]

.measure tran t1 FIND time WHEN V(g)=0 TD=400u RISE=1
.measure tran t2 FIND time WHEN V(g)=0 TD=400u RISE=101
.measure tran F[Ctune] PARAM 100/(t2-t1)

Measurement: c5
 step ctune
 1    0
 2    1e-011
 3    2e-011
 4    3e-011
 5    4e-011
 6    5e-011
 7    6e-011
 8    7e-011
 9    8e-011
 10   9e-011
 11   1e-010
Measurement: f[ctune]
 step 100/(t2-t1)
 1    4.17824e+006
 2    4.1188e+006
 3    4.06341e+006
 4    4.01193e+006
 5    3.96374e+006
 6    3.9187e+006
 7    3.87585e+006
 8    3.83618e+006
 9    3.79858e+006
 10   3.76268e+006
 11   3.72909e+006

(2) la valeur de la capacité C1 = 824 pF

.MEASURE TRAN c1 PARAM Ca
 step ca
 1    8.23911e-010

(3) la valeur de la capacité C2 = 824 pF

.MEASURE TRAN c2 PARAM Cb
 step cb
 1    8.23911e-010

(4) la valeur de la capacité Ct = 220 pF

.MEASURE TRAN C4 PARAM Ct
 step ct
 1    2.20022e-010

(5) la valeur de l’inductance L = 10 uH

.MEASURE TRAN L1 PARAM L
 step l
 1    9.99075e-006

Voici le graphe obtenu:

Télécharger les fichiers LTspice de la simulation .

Buffer
La sortie de l’oscillateur est connectée sur l’entrée à haute impédance du buffer, amplificateur à drain commun ou source follower . Sa sortie à basse impédance est reliée aux 2 amplificateurs de sortie: celui du VFO, celui du fréquencemètre.

Amplificateur du fréquencemètre
Afin de ne pas perturber le VFO, j’ai tiré une ligne séparée vers le fréquencemètre. L’amplificateur donne les impulsions nécessaires au micro contrôleur.

Réalisation de la partie 1
J’ai utilisé les composants que j’avais: des transistors JFET MPF102 pour l’oscillateur et le buffer. La tension d’alimentation de ces 3 étages fixée à 6V est régulée par le régulateur 78L06. Les condensateurs du circuit oscillant et de liaison sont du type NP0. L’inductance L = 10uH, calculée avec mini ring core calculator est faite de 45 tours de fil de Cu émaillé de 0,4 mm bobinés sur tore T50-2 acheté chez kits and parts. L’amplificateur du fréquencemètre est un BJT NPN 2N3904 en émetteur commun. Des images du circuit fini sont données dans la partie 3.

Test – Mesure
Après un temps de chauffage de 15 mn pour assurer la stabilité de l’oscillateur, le fréquencemètre branché à la sortie de l’amplificateur  affiche F = 4.311 MHz , fréquence proche de celle mesurée en simulation et calculée (F = 4,178 avec Ctune = 0).
Avec la sonde 10:1 à l’échelle 50mV/cm L’oscilloscope donne Vpp = 185mV soit Vpp = 1,85 V.
Pour la mesure HF, j’ai construit une sonde HF sur le modèle N5ESE’s Ballpoint RF Probe. La sonde donne sur le multimètre Vrms = 0,738 V soit Vpp = 0,738*2*√2 = 2,09 V valeur voisine de celle lue sur l’oscilloscope.
Calcul de la capacité d’accord:
(M1) LC = 25330,3 / F2  avec L en uH, C en pF, F en MHz
(M2) C pF = 25330,3 / (F2..L) = 136 pF avec F= 4,311 MHz, L = 10 uH
(M3) capacité des 2 condensateurs de 820pF en série C1 et C2 = 820 / 2 = 410 pF
(M4) capacité Ct = (410 * 136) / (410 -136) = 204 pF.

Photo 1 signal en sortie du buffer

Références
STABILITE DES OSCILLATEURS  – Olivier ERNST F5LVG
Calcul et réalisation d’un VFO Part1 et Part2 – F6EVT
VFO – CT4ER
Clapp oscillators – Ian Purdie VK2TIP

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=1064 3