F8EOZ » oscillateur http://www.f8eoz.com Informatique - Electronique - Ham radio Thu, 11 May 2017 15:37:43 +0000 fr-FR hourly 1 http://wordpress.org/?v=3.5 Transceiver CW 20 m – Oscillateur et Mélangeur de l’émetteur http://www.f8eoz.com/?p=2606 http://www.f8eoz.com/?p=2606#comments Thu, 25 Apr 2013 15:53:14 +0000 admin http://www.f8eoz.com/?p=2606 Je réunis dans un même article la description de l’oscillateur et du mélangeur de l’émetteur. L’oscillateur génère le signal de fréquence fixe F = 10,240 MHz de l’émetteur. Le mélangeur reçoit ce signal et celui du VFO pour produire un signal dans la bande de fréquence F = [14 ; 14,350] MHz qui sera ensuite amplifié et dirigé vers l’antenne.

La figure 1 ci-dessous, montre le schéma du circuit.

Figure 1: Oscillateur et Mélangeur de l'émetteur

Figure 1: Oscillateur et Mélangeur de l’émetteur

Download  Télécharger les fichiers Kicad.

1. L’oscillateur

Il comprend 1 seul étage:

  • 1 transistor 2N3904,
  • oscillateur à quartz du type Colpitts ou Clapp dont la fréquence peut être calée au moyen d’un condensateur,
  • fréquence d’oscillation F= 10,240Mhz.

Il n’ y a pas d’étage buffer, le mélangeur réalise l’isolation entre l’oscillateur et le circuit suivant.
On se reportera à l’article décrivant le BFO pour la simulation et la modélisation du quartz.

2. Le mélangeur

J’ai voulu essayer un mélangeur actif construit avec des composants discrets courants, fournissant un haut niveau de sortie. En cherchant, j’ai trouvé un mélangeur construit avec 3 transistors 2N3904. C’est un montage réalisé par KD1JV dans son transceiver ADC-40. Il s’agit d’une réalisation du CA3028 avec des composants discrets.

2.1. Description

Deux transistors forment un amplificateur différentiel. Leurs émetteurs sont reliés entre eux et au collecteur d’un troisième transistor fonctionnant en source de courant constant.
A la sortie j’ai placé un filtre passe bande basé sur le modèle utilisé dans le récepteur.

2.2. Analyse en régime continu

Le schéma figure 2 ci-dessous, montre le circuit de simulation LTspice.

Figure 2: Mélangeur de l'émetteur - Simulation LTspice en régime continu

Figure 2: Mélangeur de l’émetteur – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues :

V(txvcc):  13.8         voltage
V(b1):     8.23812      voltage
Ic(Q1):    0.0249514    device_current
Ib(Q1):    8.34458e-005 device_current
Ie(Q1):    -0.0250349   device_current
V(b2):     8.18354      voltage
V(c2):     13.8         voltage
Ic(Q2):    0.00364799   device_current
Ib(Q2):    1.16127e-005 device_current
Ie(Q2):    -0.0036596   device_current
V(b3):     3.62683      voltage
V(c3):     7.49554      voltage
V(e3):     2.87929      voltage
Ic(Q3):    0.0286945    device_current
Ib(Q3):    9.84465e-005 device_current
Ie(Q3):    -0.0287929   device_current

Download  Télécharger les fichiers de simulation LTspice.

Le schéma figure 3 ci-dessous, montre le circuit simplifié en régime continu.
Tous les condensateurs sont remplacés par des circuits ouverts.
Toutes les inductances sont remplacées par des courts-circuits.
On note que:

  • les émetteurs de Q1 et Q2 sont au même potentiel,
  • les bases de Q1 et Q2 sont au même potentiel.
Figure 3: Mélangeur de l'émetteur en régime continu

Figure 3: Mélangeur de l’émetteur en régime continu

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

2.3. Analyse en régime variable

Le schéma figure 4 ci-dessous, montre le circuit de simulation LTspice.

Figure 4: Mélangeur de l'émetteur - Simulation LTspice en régime continu

Figure 4: Mélangeur de l’émetteur – Simulation LTspice en régime variable

La figure 5 ci-dessous, montre le graphe des courants et tensions obtenu avec une tension d’oscillateur sinusoïdale V3 = 1 Vpp de fréquence F = 10,24 MHz et une tension de VFO sinusoïdale V2 = 1 Vpp de fréquence F = 3,76 MHz.  Ce qui permet d’obtenir après filtrage, une tension 170 mVpp  de fréquence F = 14 MHz sur 50 Ω en sortie.

Figure 5: Mélangeur de l'émetteur - Graphe des courants et tensions

Figure 5: Mélangeur de l’émetteur – Graphe des courants et tensions

Download  Télécharger les fichiers de simulation LTspice.

3. Réalisation

3.1. Circuit imprimé

Suivant la méthode modulaire, l’oscillateur et le mélangeur sont montés sur 2 plaques. La photo 1 ci-dessous, montre le circuit de l’oscillateur réalisé sur une plaque d’époxy cuivrée simple face de 24 x 24 mm selon le mode de fabrication décrit dans les articles précédents. Le circuit tracé est un quadrillage: 2 lignes de 8 mm + 2 lignes de 4 mm, 3 colonnes de 8 mm. Nous obtenons ainsi 2×3 = 6 îlots de 8×8 mm. Les 2 lignes de 4 mm, placées de part et d’autre, servent de rail de masse. De même, La photo 2 ci-dessous, montre le circuit du  mélangeur réalisé sur une plaque d’époxy cuivrée simple face de 48 x 32 mm. Le circuit tracé est un quadrillage: 3 lignes de 8 mm + 2 lignes de 4 mm, 6 colonnes de 8 mm. Nous obtenons ainsi 3×6 = 18 îlots de 8×8 mm. Les 2 lignes de 4 mm, placées de part et d’autre, servent de rail de masse. L’oscillateur placé à proximité du mélangeur est relié à celui-ci par un simple fil très court. Le mélangeur est relié à la sortie du VFO par un cable coaxial 50Ω RG-174. Attention un seul côté du blindage doit être relié au plan de masse.

Photo 1: Circuit imprimé de l'oscillateur de l'émetteur

Photo 1: Circuit imprimé de l’oscillateur de l’émetteur

Photo 2: Circuit imprimé du mélangeur de l'émetteur

Photo 2: Circuit imprimé du mélangeur de l’émetteur

3.2. Composants

Les résistances et condensateurs sont des CMS ou SMD 0805 et 1206. Ces composants sont tous achetés sur Ebay qui offre dans ce domaine, un vaste choix (voir fournisseurs en marge) . Le mode de soudage est expliqué dans les articles précédents.

3.3. Bobinages

J’ai utilisé des tores T50-6 que j’avais en stock, achetés chez kits and parts.

Transformateurs T1 et T2

Ils sont réalisés avec du fil de cuivre émaillé de 0,9 mm récupéré dans une alimentation de PC hors d’usage. Pour réaliser T1, j’ai utilisé 16 cm pour les 8 tours et 21 cm pour les 11 tours. Pour réaliser T2, j’ai utilisé 21 cm pour les 11 tours et 6 cm pour les 2 tours. Répartir uniformément les spires du primaire et du secondaire sur le tore.

3.4. Tension d’alimentation

La tension d’alimentation est la ligne TxVcc. La commutation Rx/Tx fera l’objet d’un prochain article. Pour le test, l’alimentation est connectée provisoirement à Vcc = 13,8 V. La tension réelle TxVcc sera inférieure à cette valeur.

4. Test

4.1. Mesure des tensions continues smoke test

Vérifier les tensions base, collecteur et émetteur. Les valeurs sont conformes à la simulation.

4.2. Dispositif

L’entrée du transistor Q3 du mélangeur est reliée à l’oscillateur de l’émetteur. L’entrée  du transistor Q1 du mélangeur est reliée à la sortie du VFO. La sortie du mélangeur est relié au Driver.

4.3. Résultat

Signal de sortie
Avec l’oscilloscope, échelle Y=0,1 V/cm, sonde atténuatrice 1:1, échelle X=0.5 us/cm, loupe x5, la photo 3 ci-dessous, montre le signal en sortie Vout ≈ 560 mV pp.
La fréquence F mesurée avec le fréquencemètre ≈ 14,100 MHz.

Photo 3: Signal de sortie du mélangeur de l'émetteur

Photo 3: Signal de sortie du mélangeur de l’émetteur

Références
The ADC-40 All Discrete Component transceiver Revised 6-23-09 – Steven WEBER  KD1JV

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=2606 0
Transceiver CW 20 m – VFO – Partie 1 http://www.f8eoz.com/?p=1064 http://www.f8eoz.com/?p=1064#comments Mon, 21 May 2012 11:20:02 +0000 admin http://www.f8eoz.com/?p=1064 Il existe sur le net de nombreux exemples de VFO. La réalisation de ce VFO, des plus classiques, m’a demandé cependant, beaucoup d’essais et mises au point. Je commence par en fixer le cahier des charges:
- oscillateur Clapp,
- variation du circuit d’accord par diode varicap (varactor)
- plage de fonctionnement de 3,760MHz à 4,110MHz, pour couvrir la bande des 14 MHz avec une fréquence intermédiaire de 10,240 MHz,
- amplificateur délivrant 15 dBm sur 50 ohms, pour alimenter un mélangeur à diodes,
- filtre passe bas pour éliminer les harmoniques,
- amplificateur destiné à alimenter mon fréquencemètre dans un premier temps, puis, dans le futur, un micro contrôleur intégré au transceiver.

Qui se traduit sous la forme du schéma fonctionnel suivant:

Ci-dessous le schéma complet du circuit. Chaque partie du circuit est décrite ensuite.

Télécharger les fichiers Kicad du schéma .

L’oscillateur
J’ai opté pour l’oscillateur Clapp, connu pour sa stabilité et aussi pour la facilité de fabrication de la bobine sans prise intermédiaire. Facilité apparente toutefois, la mise au point de l’oscillateur m’a permis de vérifier la loi de Murphy étendue aux oscillateurs: « un amplificateur oscille, un oscillateur n’oscille pas » et de connaître les limites de la simulation. J’ai construit de superbes oscillateurs qui, en simulation, fonctionnaient parfaitement avec toutes les combinaisons LC. Satisfait du montage virtuel, je prenais avec enthousiasme le fer à souder pour le monter. Je me hâtai de brancher l’oscilloscope. Hélas! l’écran restait désespérément vide. Il me fallait remettre tout à plat. Après maintes recherches sur le net, j’ai trouvé une excellente synthèse sur le sujet réalisée par Olivier ERNST F5LVG intitulée « STABILITE DES OSCILLATEURS« .

Pour obtenir un oscillateur stable qui oscille, il faut que la capacité d’accord soit supérieure à Ce et inférieure à Cmax/2.
(1) Ce pF = Fo * 100
(2) Cmax pF = 6000 / Fo
(3) Cmax/2 = 3000 / Fo
Calculs:
(4) Fo = limite supérieure de la bande = 4,11 MHz
(5) Ce = 4,11 * 100 = 411 pF
(6) Cmax/2 = 3000 / 4,11 = 730 pF
(7) Résultat:  capacité d’accord pF = ] 411 ; 730 [

Figure 1

Cas de l’oscillateur Clapp figure 1.
F5LVG indique que les deux capacités du Clapp doivent, du fait de leur mise en série, avoir une valeur double de la valeur calculée par la théorie. Comme base de départ, les valeurs des 2 capacités principales peuvent être égales à Cmax/2 chacune, la valeur de la capacité en série avec la bobine étant égale au quart de cette valeur y compris le CV. Partant de ce calcul, je prends les valeurs normalisées E12 supérieures les plus proches soit C1 = C2 = 820 pF pour les deux capacités en série et Ct = 820 pF / 4 = 220 pF pour la capacité en série avec la bobine.
Calcul de L:
(8) A la résonance Lw = 1/Cw ou L = 1/Cw2
(9) w2 = (2πFo)2
(10) C = 1/[1/Ct + 1/C1 + 1/C2]
(11) Ct = 220 pF = capacité totale utilisée pour caler et balayer l’intervalle de fréquence F MHz=[3,76 ; 4,11]
(12) C = 147 pF
(13) Résultat L = 10 uH

L’excellente synthèse sur le VFO « Calcul et réalisation d’un VFO Part1 et Part2″ de F6EVT indique la valeur des réactances capacitives des capacités C1 et C2, soit Xc1 = Xc2 = 45 ohms pour le Colpitts et le Clapp. Partant de là, effectuons les calculs:
(14) Xc = 1/Cw
(15) C = 1/wXc
(16) w = 2πFo
(17) C = 861 pF = C1 = C2 (figure 1) résultat proche du calcul précédent.

Si vous êtes allergique au calcul mental ou à la règle à calcul, vous pouvez utiliser ce calculateur.

Après un passage par la simulation SPICE (voir détail ci-dessous), je suis parti sur cette base pour monter l’oscillateur.  Je connecte l’oscilloscope. Eurêka! Miracle de la technique! Une superbe sinusoïde se dessine sur le graticule.

Simulation
Pour que ce travail soit réutilisable, j’ai conçu un modèle de simulation entièrement paramétrable avec LTspiceIV de LINEAR TECHNOLOGY. Voici le modèle de simulation:


Paramètres principaux à entrer:
.PARAM Fmax=4.11Meg : Fréquence haute d’oscillation Fo
.PARAM XL=258 : Réactance inductive de la bobine L à Fo (voir figure 1)
.PARAM Xca=47 : Réactance capacitive du condensateur C0 et C1 à Fo (voir figure 1)
.PARAM Xct=176 : Réactance capacitive du condensateur Ct en série avec L à Fo (voir figure 1)
.STEP PARAM Ctune 0p 100p 10p : variation du condensateur variable en // sur Ct

Notes:
(1) Paramètre Xct: puisque Ct = Ca/4 vous pouvez indiquer Xct = 4*Xca
(2) Paramètre Ctune: représente le CV ou la diode varicap.

Simulation : analyse transitoire
Elle calcule les variables du circuit en fonction du temps. Le résultat est enregistré dans le fichier .log . Au cours de cette analyse on calcule:
(1) la fréquence obtenue F MHz = [4,178; 3,729]pour chaque valeur de Ctune pF = [0; 100]

.measure tran t1 FIND time WHEN V(g)=0 TD=400u RISE=1
.measure tran t2 FIND time WHEN V(g)=0 TD=400u RISE=101
.measure tran F[Ctune] PARAM 100/(t2-t1)

Measurement: c5
 step ctune
 1    0
 2    1e-011
 3    2e-011
 4    3e-011
 5    4e-011
 6    5e-011
 7    6e-011
 8    7e-011
 9    8e-011
 10   9e-011
 11   1e-010
Measurement: f[ctune]
 step 100/(t2-t1)
 1    4.17824e+006
 2    4.1188e+006
 3    4.06341e+006
 4    4.01193e+006
 5    3.96374e+006
 6    3.9187e+006
 7    3.87585e+006
 8    3.83618e+006
 9    3.79858e+006
 10   3.76268e+006
 11   3.72909e+006

(2) la valeur de la capacité C1 = 824 pF

.MEASURE TRAN c1 PARAM Ca
 step ca
 1    8.23911e-010

(3) la valeur de la capacité C2 = 824 pF

.MEASURE TRAN c2 PARAM Cb
 step cb
 1    8.23911e-010

(4) la valeur de la capacité Ct = 220 pF

.MEASURE TRAN C4 PARAM Ct
 step ct
 1    2.20022e-010

(5) la valeur de l’inductance L = 10 uH

.MEASURE TRAN L1 PARAM L
 step l
 1    9.99075e-006

Voici le graphe obtenu:

Télécharger les fichiers LTspice de la simulation .

Buffer
La sortie de l’oscillateur est connectée sur l’entrée à haute impédance du buffer, amplificateur à drain commun ou source follower . Sa sortie à basse impédance est reliée aux 2 amplificateurs de sortie: celui du VFO, celui du fréquencemètre.

Amplificateur du fréquencemètre
Afin de ne pas perturber le VFO, j’ai tiré une ligne séparée vers le fréquencemètre. L’amplificateur donne les impulsions nécessaires au micro contrôleur.

Réalisation de la partie 1
J’ai utilisé les composants que j’avais: des transistors JFET MPF102 pour l’oscillateur et le buffer. La tension d’alimentation de ces 3 étages fixée à 6V est régulée par le régulateur 78L06. Les condensateurs du circuit oscillant et de liaison sont du type NP0. L’inductance L = 10uH, calculée avec mini ring core calculator est faite de 45 tours de fil de Cu émaillé de 0,4 mm bobinés sur tore T50-2 acheté chez kits and parts. L’amplificateur du fréquencemètre est un BJT NPN 2N3904 en émetteur commun. Des images du circuit fini sont données dans la partie 3.

Test – Mesure
Après un temps de chauffage de 15 mn pour assurer la stabilité de l’oscillateur, le fréquencemètre branché à la sortie de l’amplificateur  affiche F = 4.311 MHz , fréquence proche de celle mesurée en simulation et calculée (F = 4,178 avec Ctune = 0).
Avec la sonde 10:1 à l’échelle 50mV/cm L’oscilloscope donne Vpp = 185mV soit Vpp = 1,85 V.
Pour la mesure HF, j’ai construit une sonde HF sur le modèle N5ESE’s Ballpoint RF Probe. La sonde donne sur le multimètre Vrms = 0,738 V soit Vpp = 0,738*2*√2 = 2,09 V valeur voisine de celle lue sur l’oscilloscope.
Calcul de la capacité d’accord:
(M1) LC = 25330,3 / F2  avec L en uH, C en pF, F en MHz
(M2) C pF = 25330,3 / (F2..L) = 136 pF avec F= 4,311 MHz, L = 10 uH
(M3) capacité des 2 condensateurs de 820pF en série C1 et C2 = 820 / 2 = 410 pF
(M4) capacité Ct = (410 * 136) / (410 -136) = 204 pF.

Photo 1 signal en sortie du buffer

Références
STABILITE DES OSCILLATEURS  – Olivier ERNST F5LVG
Calcul et réalisation d’un VFO Part1 et Part2 – F6EVT
VFO – CT4ER
Clapp oscillators – Ian Purdie VK2TIP

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=1064 3