F8EOZ » PA http://www.f8eoz.com Informatique - Electronique - Ham radio Thu, 11 May 2017 15:37:43 +0000 fr-FR hourly 1 http://wordpress.org/?v=3.5 Transceiver CW 20 m – Amplificateur de puissance RF power amplifier http://www.f8eoz.com/?p=2821 http://www.f8eoz.com/?p=2821#comments Fri, 22 Nov 2013 15:22:02 +0000 admin http://www.f8eoz.com/?p=2821 Vita brevis, ars longa. L’année s’achève déjà. J’arrive au dernier étage de mon transceiver. Je me suis orienté a priori vers l’utilisation des transistors de commutation MOSFET qui sont utilisés en commutation rapide de haute puissance. Le modèle IRF510, l’un des plus utilisés en QRP, est disponible pour moins de 1 euro. Pour quelques euros il est possible de se construire un PA QRP. Le net foisonne d’exemples d’ amplificateur de puissance RF. En reproduire un serait certes un bon exercice de soudure mais me laisserait sur ma faim. Je veux en savoir un peu plus sur ces composants et faire ma propre expérience.

Un excellent document de NA5N, Paul Harden, traite des amplificateurs MOSFET en classe C,D,E et F. Il m’a servi de guide principal pour réaliser cet article. Au préalable, un peu de théorie très utile avec les documents de Joël Redoutey F6CSX et Philippe Roux.

1. Cahier des charges:

  • un seul transistor MOSFET IRF510,
  • QRP, 2W à 5W,
  • filtre passe-bande séparé.

2. Caractéristiques du MOSFET IRF510

Le transistor IRF510 est du type canal N à enrichissement. C’est un dispositif qui contrôle un courant au moyen d’un tension. Autrement dit, l’intensité du courant de drain dépendra de la tension de grille-source.

Il faut lui appliquer une certaine tension Vgs positive pour obtenir un courant de drain Id significatif. Tant que la tension de commande n’atteint pas ce seuil Vt, le courant de drain reste quasiment nul. Au delà de la tension de seui Vt, le courant de drain Id suit approximativement de manière linéaire la tension grille-source Vgs. Au delà d’une valeur de saturation Vdsat le courant de drain n’augmente plus.

Il s’agit d’obtenir un fonctionnement correct et optimal de l’amplificateur. La puissance demandée à l’amplificateur entraîne un échauffement du composant. Un choix approximatif du point de fonctionnement entraînera son claquage ou une déformation du signal.

Tracer les courbes caractéristiques permet de faire connaissance avec notre transistor.

2.1. Caractéristique de sortie

Le schéma figure 1 ci-dessous montre le circuit de simulation qui permet de tracer la caractéristique de sortie Id = f(Vds)|Vgs paramètre.

Figure 1: IRF510 - Caractéristique de sortie

Figure 1: IRF510 – Caractéristique de sortie

La figure 2 ci-dessous, montre la courbe obtenue. La tension Vgs varie de 4,5V à 8V au pas de 0,5V. La tension Vds varie de 0 à 14V au pas de 1V. Ces valeurs ont été choisies dans la plage de fonctionnement de l’amplificateur.

Figure 2: IRF510 - Graphe de la caractéristique de sortie

Figure 2: IRF510 – Graphe de la caractéristique de sortie

Download  Télécharger les fichiers de simulation LTspice.

2.2. Caractéristique de transfert

Le schéma figure 3 ci-dessous montre le circuit de simulation qui permet de tracer la caractéristique de transfert Id = f(Vgs)|Vds constant.

Figure 3: IRF510 - Caractéristique de transfert

Figure 3: IRF510 – Caractéristique de transfert

La figure 4 ci-dessous, montre la courbe obtenue. La tension Vgs varie de 3V à 8V au pas de 1V. La tension Vds = 13.8V est constante. Ces valeurs ont été choisies dans la plage de fonctionnement de l’amplificateur.

Figure 4: IRF510 - Graphe de la caractéristique de transfert

Figure 4: IRF510 – Graphe de la caractéristique de transfert

Download  Télécharger les fichiers de simulation LTspice.

2.3. Analyse

La puissance commandée est remarquable, avec une tension Vgs = 6V et une tension Vds=12V nous avons un courant de drain-source de 4A, ce qui donne une puissance de 12 x 4 = 48W au delà de la limite thermique de 45W indiquée dans la datasheet. Dans cette région notre composant ne survivrait pas.

La région linéaire est courte.

La tension de seuil Vt ≈ 3,8V.

La transconductance g = ΔId/ΔVg ≈ 1 à 2A/V.

3. Analyse en régime continu

Le schéma figure 5 ci-dessous, montre le circuit de simulation LTspice.

Figure 5: PA - Simulation LTspice en régime continu

Figure 5: PA – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues :

V(in):    0            voltage
V(a):     3.7          voltage
V(out):   6.9e-017     voltage
V(vgate): 3.7          voltage
V(d):     13.8         voltage
V(g):     3.7          voltage
V(vdd):   13.8         voltage
I(C11):   6.486e-016   device_current
I(C9):    1.38e-018    device_current
I(C7):    1.63947e-038 device_current
I(C6):    1.518e-038   device_current
I(C4):    3.03606e-038 device_current
I(C10):  -1.38e-018    device_current
I(C8):    1.38e-018    device_current
I(C5):    6.486e-016   device_current
I(C3):    3.7e-017     device_current
I(C2):    3.7e-019     device_current
I(C1):    3.7e-019     device_current
I(L5):    4.44089e-011 device_current
I(L4):    1.38e-018    device_current
I(L3):   -1.38e-018    device_current
I(L2):   -1.38e-018    device_current
I(L1):   -4.46143e-011 device_current
I(R3):   -0.00037      device_current
I(R2):    4.44089e-017 device_current
I(R1):   -4.7581e-017  device_current
I(Rload): 1.38e-018    device_current
I(V3):   -0.00037      device_current
I(V1):   -4.36557e-011 device_current
I(V2):    3.7e-019     device_current
Id(M1):   1.19247e-010 device_current
Ig(M1):  -8.84454e-011 device_current
Is(M1):  -3.0802e-011  device_current

Download  Télécharger les fichiers de simulation LTspice.

Le schéma figure 6 ci-dessous, montre le circuit simplifié en régime continu.
Tous les condensateurs sont remplacés par des circuits ouverts.
Toutes les inductances sont remplacées par des courts-circuits.
On note que:

  • le courant Ig est nul,
  • le courant Id est nul,
  • le transistor est polarisé à la limite du seuil de conduction.
Figure 6: PA en régime continu

Figure 6: PA en régime continu

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

4. Analyse en régime variable

Le schéma figure 7 ci-dessous, montre le circuit simplifié en régime variable.
La tension continue Vdd en régime variable se comporte comme un court-circuit.
La résistance R3 est shuntée par son condensateur de découplage.
Le transformateur de sortie est formé des 2 bobines torsadées, fortement couplées L1 = L2 en série dont le point milieu est relié au drain. Le rapport de transformation n = 1:2 et le rapport d’impédance 1:4.

Figure 7: PA - En régime variable

Figure 7: PA – En régime variable

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

4.1. Graphe des tensions et courants

Le schéma figure 8 ci-dessous, montre le circuit de simulation LTspice.

Figure 8: PA - Simulation LTspice en régime variable

Figure 8: PA – Simulation LTspice en régime variable

La figure 9 ci-dessous, montre le graphe des courants et tensions obtenu avec une tension d’entrée Vin = 4Vpp à 14MHz. Cette tension est la tension réelle mesurée qui est fourni par le driver décrit dans l’article précédent. La tension de grille Vg = 3,7V règle le transistor au seuil de conduction. Le graphe vert représente la courbe de variation de la puissance instantanée p = u * i dans la charge résistive pure de 50 Ω. Le courant et la tension sont en phase. L’amplitude de la tension de sortie Vout = 12V. L’amplitude du courant dans la charge IRload = 0.21A. Le wattmètre indiquerait environ (12/√2).(0.21/√2) = 1,25W = 2,5W/2.

Figure 9: PA - Graphe des courants et tensions

Figure 9: PA – Graphe des courants et tensions

Download  Télécharger les fichiers de simulation LTspice.

5. Réalisation

5.1. Schéma

La figure 10 ci-dessous montre le schéma du PA avec le filtre de sortie. La tension de grille est obtenue avec un régulateur 5V et une résistance ajustable qui permet de prélever une fraction de cette tension.

Figure 10: Schéma du PA avec son filtre

Figure 10: Schéma du PA avec son filtre

Download  Télécharger les fichiers Kicad.

5.2. Bobinages

J’ai utilisé des tores T50-2  T50-6 FT50-43 que j’avais en stock, achetés chez kits and parts.

Transformateur L1 et L2

Il est réalisé avec du fil de cuivre émaillé de 0,7 mm récupéré dans une alimentation de PC hors d’usage. Deux fils de 20 cm torsadés à raison d’une torsion par cm. Répartir uniformément les spires. Très important, la sortie d’une bobine est reliée à l’entrée de l’autre. On comprend mieux en se reportant au schéma simplifié (analyse en régime variable) ci-dessus, les 2 bobines sont ainsi branchées en série et le courant circule dans le même sens.

Filtre L3 et L4

Il est réalisé avec 20cm de fil de cuivre émaillé de 0,7 mm récupéré dans une alimentation de PC hors d’usage. Répartir uniformément les spires.

Transformateur L5
Il est réalisé avec du fil de cuivre émaillé de 0,3 mm récupéré dans le culot d’une lampe fluorescente. Le culot de ces lampes contient quelques composants dont le précieux bobinage. Vous pouvez en savoir plus ici  ou . Attention au démontage, ne pas briser le tube de verre, certaines contiennent du mercure. Le bobinage est maintenu à l’aide d’une bande autocollante récupérée sur un tore d’une alimentation de PC.

5.3. Charge fictive (antenne fictive)

J’ai soudé en parallèle 10 vintage résistances au carbone non inductive de 470Ω 2W.

5.4. Circuit imprimé

Le PA est câblé sur une plaque d’époxy de 53x53mm. Le filtre est câblé sur une plaque de 53x20mm. Les plaques sont enduites entièrement et copieusement au feutre noir BIC Marking ONYX permanent. Les îlots sont tracés avec une pointe à tracer. Après gravure au perchlorure de fer et nettoyage, le circuit est étamé avec de la pâte à étamer Castotin sp 5423 acheté dans un magasin de bricolage. La pâte est étalée à l’aide d’un pinceau sur le circuit. Inutile d’en mettre beaucoup. Elle est chauffée avec un décapeur thermique. Ne pas chauffer trop longtemps. Dès que le circuit est couvert, arrêter. La photo 1 ci-dessous, montre le résultat obtenu. On remarque que la finesse du tracé permet de souder les minuscules composants CMS 0805 et 1206 entre chaque îlot. On note aussi la différence d’étamage avec les premiers circuits du DRIVER et du MIXER étamés avec de la soudure au fer chaud. Le transistor IRF510 est fixé sur un radiateur de bonne taille. La dissipation thermique peut lui sauver la vie! Le bloc est placé à côté du DRIVER et de l’antenne. La ligne Vdd  est reliée à l’alimentation 13,8V, l’entrée du PA est reliée et la sortie du DRIVER, la sortie du PA est reliée au filtre, la sortie du filtre est reliée pour l’instant à une charge fictive de 50Ω.

Photo 1: Circuit imprimé du PA

Photo 1: Circuit imprimé du PA

6. Test

6.1. Mesure des tensions continues smoke test

Avant câblage du transistor IRF510, le circuit est mis sous tension pour régler la tension de seuil à 2,5V. Pour ce faire, la résistance ajustable est placée à mi-course. Pour l’instant ce réglage n’est pas modifié. Après mise hors tension, le transistor est ensuite câblé. Mettre sous tension. Vérifier les tensions grille Vg=2.5V et drain Vd=13.8V.

6.2. Dispositif

La sortie du filtre est connectée uniquement à la charge fictive de 50Ω.
Tension Vg=2.5V. Compte tenu de la dispersion des caractéristiques de l’IRF510 je me tiens pour l’instant à cette valeur.

6.3. Instruments de mesure

Oscilloscope HAMEG HM 312-8.
Sonde passive HAMEG HZ36 en position x10, 10MΩ, bande passante 100MHz.
Multimètre numérique VICHY 9808 10MΩ.
Sonde HF maison pour le multimètre, construite sur le modèle N5ESE’s Ballpoint RF Probe.
Fréquencemètre à microcontrôleur PIC  maison.

6.3. Résultat

Signal d’entrée
Avec l’oscilloscope, échelle Y=0,1 V/cm, sonde x10, échelle X=0.5 us/cm, loupe x5, la photo 2 ci-dessous, montre le signal en entrée Vin ≈ 3.8 Vpp.
La fréquence F mesurée avec le fréquencemètre ≈ 14,020 MHz.

Photo 2: PA- Signal d'entrée provenant du DRIVER

Photo 2: PA- Signal d’entrée provenant du DRIVER

Signal de sortie
Avec l’oscilloscope, échelle Y=1 V/cm, sonde x10, échelle X=0.5 us/cm, loupe x5, la photo 3 ci-dessous, montre le signal en sortie sur la charge fictive de 50Ω, Vout ≈ 29 Vpp. L’amplitude de Vout=29/2=14.5V. La mesure effectuée avec ma sonde HF sur le multimètre indique Vout ≈ 12,7VRMS valeur un peu supérieure.
La fréquence F mesurée avec le fréquencemètre ≈ 14,020 MHz.
Le wattmètre devrait indiquer une puissance de (14,5*14,5)/(50*2) ≈ 2 W. En radio, sur 50 Ohms, dBm = 10 x log P avec P en milliwatt. Avec la puissance mesurée, il vient 10 log 2000 = 33dBm. Cela peut être calculé simplement avec mini dB calculator de DL5SWB. Je garde pour l’instant cette valeur.

Photo 3: PA- Signal de sortie sur la charge fictive

Photo 3: PA- Signal de sortie sur la charge fictive

Références
The Handyman’s Guide to MOSFET Class D/E/F amplifiers – Part 1

The Handyman’s Guide to MOSFET Class D/E/F amplifiers – Part 2
Radiocommunications – Amplificateurs RF de puissance – F6CSX Joël Redoutey
LES TRANSISTORS A EFFET DE CHAMP MOS – F6CSX Joël Redoutey
TRANSISTORS A EFFET DE CHAMP DE TYPE MOS – Philippe Roux – IUT de Bordeaux

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=2821 0
Transceiver CW 20 m – PA Driver http://www.f8eoz.com/?p=2520 http://www.f8eoz.com/?p=2520#comments Wed, 20 Mar 2013 17:48:39 +0000 admin http://www.f8eoz.com/?p=2520 Michel, F6FEO, m’a transmis le schéma d’un driver qu’il utilise dans ses transceivers. W7ZOI est à l’origine du montage. Avant de reproduire ce montage, je ne résiste pas à l’envie d’en analyser le fonctionnement et de le passer au banc du simulateur LTspice.

1. Description

Le schéma figure 1 ci-dessous, montre le circuit. Il comprend 2 étages amplificateur. J’ai ajouté un transformateur de sortie qui abaisse l’impédance dans un rapport 1:4 pour adapter l’impédance de sortie du driver à l’entrée du PA qui est d’environ 10 Ω. Le circuit est alimenté uniquement quand l’émetteur est actionné.

Figure 1: PA Driver

Figure 1: PA Driver

Caractéristiques:

  • gain en tension 28dB à 14MHz,
  • impédance d’entrée Zin et de sortie Zout = 50 Ω.

Pour calculer l’impédance de sortie on applique la règle Zin * Zout = R7 * RE
dans laquelle:

  • RE = R8 * VT/Ic = 3,6 * 25/80 = 3,9
  • VT est la tension thermique à la température ambiante (≈ 300 K)

D’ où Zout = 680 * 3,9 / 50 = 53 Ω.

Download  Télécharger les fichiers Kicad.

2. 1er étage

Description :

  • un transistor NPN 2N3904,
  • amplificateur en émetteur commun, polarisation par pont de base, résistance d’émetteur non découplée et réaction de collecteur découplée par un condensateur,
  • collecteur chargé par le transformateur Tr1 qui adapte l’impédance entre les 2 étages dans un rapport de 1:4.

2.1. Analyse en régime continu

Le schéma figure 2 ci-dessous, montre le circuit de simulation LTspice.

Figure 2: PA Driver - 1er Etage - Simulation LTspice en régime continu

Figure 2: PA Driver – 1er Etage – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues :

V(vcc):          13.8            voltage
V(b1):           1.56176         voltage
V(c1):           12.9187         voltage
V(e1):           0.808187        voltage
Ic(Q1):          0.0366172       device_current
Ib(Q1):          0.000118607     device_current
Ie(Q1):          -0.0367358      device_current
I(L2):           -0.0400587      device_current
I(L1):           -0.0400587      device_current
I(R4):           0.0367358       device_current
I(R3):           0.0400587       device_current
I(R2):           0.0034415       device_current
I(R1):           0.00332289      device_current
I(V1):           -0.0400587      device_current

Download  Télécharger les fichiers de simulation LTspice.

Le schéma figure 3 ci-dessous, montre le circuit simplifié en régime continu.
Tous les condensateurs sont remplacés par des circuits ouverts.
Toutes les inductances sont remplacées par des courts-circuits.

Figure 3: PA Driver - 1e Etage en régime continu

Figure 3: PA Driver – 1e Etage en régime continu

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

Le schéma figure 4 ci-dessous, montre le circuit de simulation qui trace la caractéristique de transfert en tension en régime continu ainsi que la variation du courant Ic.
La résistance de Thévenin équivalente au pont de base Rth = 3,3 *0,47/(3,3+0,47) = 0,410 KΩ.

Figure 4: PA Driver - 1er Etage - Caractéristique de transfert en tension

Figure 4: PA Driver – 1er Etage – Caractéristique de transfert en tension

La figure 5 ci-dessous, montre le graphe obtenu. On y observe les 3 zones de fonctionnement du transistor :

  • le Cutoff Ic= 0 ,
  • la zone linéaire ,
  • la zone de saturation Ic = constant.
Figure 5: PA Driver - 1er Etage - Caractéristique de transfert en tension

Figure 5: PA Driver – 1er Etage – Caractéristique de transfert en tension

Download  Télécharger les fichiers de simulation LTspice.

2.2. Analyse en régime variable

Le schéma figure 6 ci-dessous, montre le circuit simplifié en régime variable.
La tension continue TxVcc en régime variable se comporte comme un court-circuit.
La résistance de collecteur R3 est shuntée par son condensateur de découplage.
Le transformateur de sortie Tr1 est formé des 2 bobines torsadées, fortement couplées L1 = L2 en série dont le point milieu constitue la sortie.

Figure 6: PA Driver - 1e Etage en régime variable

Figure 6: PA Driver – 1e Etage en régime variable

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

2.2.1. Résistance d’entrée

Le schéma figure 7 ci-dessous, montre le circuit de simulation LTspice.

Figure 7: PA Driver - 1er Etage - Mesure de la résistance d'entrée

Figure 7: PA Driver – 1er Etage – Mesure de la résistance d’entrée

Download  Télécharger les fichiers de simulation LTspice.

La figure 8 ci-dessous, montre le graphe obtenu. La résistance d’entrée Ri varie dans le sens inverse de la résistance de charge Rload. Plus Rload augmente plus Ri diminue. Ri = 50 Ohms @ 14MHz pour Rload = 500 Ohms.

Figure 8: PA Driver - 1er Etage - Graphe de la résistance d'entrée

Figure 8: PA Driver – 1er Etage – Graphe de la résistance d’entrée

2.2.2. Résistance de sortie

Le schéma figure 9 ci-dessous, montre le circuit de simulation LTspice. On utilise ici la méthode dite de l’ohmmètre. Le générateur V2 est court-circuité AC=0, Rload est enlevé et remplacé par le générateur de courant I1.

Figure 9: PA Driver - 1er Etage - Mesure de la résistance de sortie

Figure 9: PA Driver – 1er Etage – Mesure de la résistance de sortie

Download  Télécharger les fichiers de simulation LTspice.

La figure 10 ci-dessous, montre le graphe obtenu. La résistance de sortie Rs = 250 Ohms @ 14MHz.

Figure 10: PA Driver - 1er Etage - Graphe de la résistance de sortie

Figure 10: PA Driver – 1er Etage – Graphe de la résistance de sortie

2.2.3. Gain en tension

La mesure du gain est obtenue avec le même circuit que celui de la figure 7 ci-dessus. La figure 11 ci-dessous, montre le graphe obtenu. Le gain en tension Avt = 25 @ 14MHz.

Figure 11: PA Driver - 1er Etage - Graphe du gain en tension

Figure 11: PA Driver – 1er Etage – Graphe du gain en tension

Download  Télécharger les fichiers de simulation LTspice.

3. 2ème étage

Description :

  • un transistor NPN 2N2219A,
  • amplificateur en émetteur commun, polarisation par pont de base, résistance d’émetteur non découplée et réaction de collecteur en régime variable,
  • collecteur chargé par l’inductance L4.

3.1. Analyse en régime continu

Le schéma figure 12 ci-dessous montre le circuit de simulation LTspice.
Le courant circulant dans le pont de base R5, R6 de Q2, circule aussi dans R2. Il est très faible et ne modifie pratiquement pas le point de repos de Q1.

Figure 12: PA Driver - Simulation LTspice en régime continu

Figure 12: PA Driver – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues :

V(vcc):          13.8            voltage
V(b1):           1.55347         voltage
V(c1):           12.8484         voltage
V(e1):           0.800238        voltage
V(b2):           1.04664         voltage
V(c2):           13.7998         voltage
V(e2):           0.282715        voltage
Ic(Q1):          0.036257        device_current
Ib(Q1):          0.000117437     device_current
Ie(Q1):          -0.0363744      device_current
Ic(Q2):          0.0781274       device_current
Ib(Q2):          0.000404641     device_current
Ie(Q2):          -0.0785327      device_current
I(L3):           0.0781274       device_current
I(L4):           0.0781274       device_current
I(L2):           -0.043256       device_current
I(L1):           -0.0396797      device_current
I(R8):           0.078532        device_current
I(R6):           0.00317164      device_current
I(R5):           -0.00357628     device_current
I(R4):           0.0363744       device_current
I(R3):           0.043256        device_current
I(R2):           0.0034227       device_current
I(R1):           0.00330526      device_current
I(V1):           -0.121383       device_current

Download  Télécharger les fichiers de simulation LTspice.

Le schéma figure 13 ci-dessous montre le circuit simplifié en régime continu.
Tous les condensateurs sont remplacés par des circuits ouverts.
Toutes les inductances sont remplacées par des courts-circuits.

Figure 13: PA Driver - En régime continu

Figure 13: PA Driver – En régime continu

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

3.2. Analyse en régime variable

Le schéma figure 14 ci-dessous, montre le circuit simplifié en régime variable.
La tension continue TxVcc en régime variable se comporte comme un court-circuit.
La résistance de base R5 est shuntée par son condensateur de découplage.
La résistance R7 relie la base au collecteur.
L’inductance L3 de forte valeur se comporte en HF comme une résistance infinie.
Le transformateur de sortie Tr2 est formé des 2 bobines torsadées, fortement couplées L5 = L6 en série dont le point milieu constitue la sortie.

Figure 14: PA Driver - En régime variable

Figure 14: PA Driver – En régime variable

Download  Télécharger les fichiers de l’éditeur de diagrammes DIA.

3.2.1. Résistance d’entrée

Le schéma figure 15 ci-dessous, montre le circuit de simulation LTspice.

Figure 15: PA Driver - Mesure de la résistance d'entrée

Figure 15: PA Driver – Mesure de la résistance d’entrée

Download  Télécharger les fichiers de simulation LTspice.

La figure 16 ci-dessous, montre le graphe obtenu. La résistance d’entrée Ri = 185 Ohms @ 14MHz pour Rload = 10 Ohms.

Figure 16: PA Driver - Graphe de la résistance d'entrée

Figure 16: PA Driver – Graphe de la résistance d’entrée

3.2.2. Résistance de sortie

Le schéma figure 17 ci-dessous, montre le circuit de simulation LTspice. On utilise ici la méthode dite de l’ohmmètre. Le générateur V2 est court-circuité AC=0, Rload est enlevé et remplacé par le générateur de courant I1.

Figure 17: PA Driver - Mesure de la résistance de sortie

Figure 17: PA Driver – Mesure de la résistance de sortie

Download  Télécharger les fichiers de simulation LTspice.

La figure 18 ci-dessous, montre le graphe obtenu. La résistance de sortie Rs = 10 Ohms @ 14MHz.

Figure 18: PA Driver - Graphe de la résistance de sortie

Figure 18: PA Driver – Graphe de la résistance de sortie

3.2.3. Gain en tension

La mesure du gain est obtenue avec le même circuit que celui de la figure 15 ci-dessus. La figure 19 ci-dessous, montre le graphe obtenu. Le gain en tension Avt = 24dB @ 14MHz.

Figure 19: PA Driver - Graphe du gain en tension

Figure 19: PA Driver – Graphe du gain en tension

Download  Télécharger les fichiers de simulation LTspice.

3.2.4. Graphe des tensions

La figure 20 ci-dessous, montre le graphe des tensions obtenu avec avec une tension d’entrée sinusoïdale V2 = 100 mVp de fréquence F = 14 MHz. Au delà de 300 mVp à l’entrée le signal est déformé ou écrêté. Ce qui permet d’obtenir 6 Vp maximum sur 50 Ω en sortie.

Figure 20: PA Driver - Graphe des tensions

Figure 20: PA Driver – Graphe des tensions

Download  Télécharger les fichiers de simulation LTspice.

4. Réalisation

4.1. Circuit imprimé

La photo 1 ci-dessous, montre le circuit réalisé sur une plaque d’époxy cuivrée simple face de 48 x 32 mm selon le mode de fabrication décrit dans les articles précédents. Le circuit tracé est un quadrillage: 3 lignes de 8 mm + 2 lignes de 4 mm, 6 colonnes de 8 mm. Nous obtenons ainsi 3×6 =18 îlots de 8×8 mm. Les 2 lignes de 4 mm, placées de part et d’autre, servent de rail de masse. Une résistance provisoire de 10 Ω a été placée en sortie pour le test.

Photo 1: Circuit imprimé du PA Driver

Photo 1: Circuit imprimé du PA Driver

4.2. Composants

Les résistances et condensateurs sont des CMS ou SMD 0805 et 1206. Ces composants sont tous achetés sur Ebay qui offre dans ce domaine, un vaste choix (voir fournisseurs en marge) . Le mode de soudage est expliqué dans les articles précédents.

4.3. Refroidissement des transistors

Le transistor 2N2219A polarisé en classe A, chauffe. Il faut aider le composant à évacuer la chaleur sous peine de destruction. J’ utilise pour cela un dissipateur adapté au boîtier du transistor.

4.4. Bobinages

La fabrication des bobinages est très simple. J’ai utilisé des tores FT37-43 que j’avais en stock, achetés chez kits and parts.

Transformateurs Tr1 et Tr2

Pour réaliser Tr1, j’ai préparé 2 morceaux identiques de 16 cm de fil de cuivre émaillé de 0,40 mm. J’ai noué une extrémité de ces 2 fils réunis à une attache trombone. J’ai fait de même à l’autre extrémité. La première attache est bloquée dans un étau ou serre-joint. La torsion du fil est réalisée en prenant dans la main l’autre attache et en tendant le fil. Il faut 3 à 4 torsions par cm. J’ai donc fait pour cette longueur, 50  torsions. Une excellente méthode est expliquée ici. Bobiner 10 tours en les répartissant uniformément sur le tore FT37-43. Important! Le transformateur est formé de 2 bobines en série. Il faut donc souder la fin d’une bobine à l’entrée de l’autre. Ce point est le point milieu du transformateur. Tr2 est identique à Tr1.

Bobine L4

Couper 15 cm de fil de cuivre émaillé de 0,40 mm. Bobiner 10 tours en les répartissant uniformément sur le tore FT37-43.

4.5. Tension d’alimentation

La tension d’alimentation est la ligne TxVcc. La commutation Rx/Tx fera l’objet d’un prochain article. Pour le test, l’alimentation est connectée provisoirement à Vcc = 13,8 V.

5. Test

5.1. Mesure des tensions continues smoke test

Vérifier les tensions base, collecteur et émetteur. Les valeurs sont conformes à la simulation.

5.2. Dispositif

Le circuit est relié directement au condensateur de sortie du mélangeur de l’émetteur dont la description fera l’objet d’un prochain article.

5.3. Résultat

Signal d’entrée
Avec l’oscilloscope, échelle Y=0,1 V/cm, sonde atténuatrice 1:1, échelle X=0.5 us/cm, loupe x5, la photo 2 ci-dessous, montre le signal en entrée Vin ≈ 560 mV pp.
La fréquence F mesurée avec le fréquencemètre ≈ 14,100 MHz.

Photo 2: Signal d'entrée du PA Driver

Photo 2: Signal d’entrée du PA Driver

Signal de sortie
Avec l’oscilloscope, échelle Y=1 V/cm, sonde atténuatrice 1:1, échelle X=0.5 us/cm, loupe x5, la photo 3 ci-dessous, montre le signal de sortie Vout ≈ 3,3 V pp.
La fréquence F mesurée avec le fréquencemètre ≈ 14,100 MHz.

Photo 3: Signal de sortie du PA Driver

Photo 3: Signal de sortie du PA Driver

Le gain en tension Avt = Vout/Vin = 15,4 dB @ 14,100MHz. A comparer avec les 24 dB obtenus en simulation.

Références
LES MONTAGES AMPLIFICATEURS FONDAMENTAUX A TRANSISTORS BIPOLAIRES – Philippe Roux – IUT de Bordeaux

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=2520 2