F8EOZ » 2N3906 http://www.f8eoz.com Informatique - Electronique - Ham radio Thu, 11 May 2017 15:37:43 +0000 fr-FR hourly 1 http://wordpress.org/?v=3.5 Transceiver CW 20 m – Module RF Version 2 http://www.f8eoz.com/?p=3347 http://www.f8eoz.com/?p=3347#comments Mon, 02 Feb 2015 11:38:43 +0000 admin http://www.f8eoz.com/?p=3347 L' Emission et la Réception d'Amateur de Roger A. RAFFIN F3AV 6ème édition 1966

J’ai commencé la réalisation du châssis et du boîtier. J’ai choisi de monter chaque module sur plaquette PCB FR4 pastillée étamée à trous métallisés double face de 5x7x0,16 cm. Disponibles sur Ebay, ces plaquettes sont de bonne qualité, d’un prix abordable achetées par paquet. Elles sont fixées sur le châssis. Je reviendrai plus tard sur sa fabrication. Avec la première version j’ai repris lentement possession d’un domaine que j’avais laissé depuis longtemps (Photo ci-contre L’ Emission et la Réception d’Amateur de Roger A. RAFFIN F3AV 6ème édition 1966).

Fiat lux… A l’écoute des QSO, à l’observation des performances du récepteur, à la lumière de l’expérience acquise je révise chaque module.


1. Description fonctionnelle

Il comprend les éléments suivants:

  • le commutateur Rx/Tx,
  • le limiteur à diode,
  • l’atténuateur,
  • le filtre passe bande,
  • l’amplificateur RF.

Le schéma fonctionnel est représenté figure 1. Chaque élément est décrit dans les paragraphes suivants.

Figure 1 - Schéma fonctionnel

Figure 1 – Schéma fonctionnel

2. Commutateur Rx/Tx

Figure 2 - Commutation + limiteur + Attenuateur

Figure 2 – Commutation + limiteur + Attenuateur

La figure 2 ci-dessus montre les 3 premiers éléments du module soumis à LTSPICE. Pour simplifier le schéma, le commutateur a été réduit à la commutation de l’antenne. Le transistor de commande 2N3906 et la clef sont simplement figurés par la source de tension continue V3, ligne appelée TxLine figure 2.

Le dispositif de commutation est entièrement électronique. Il n’a pas changé. Une LED témoin et sa résistance série de 1 KΩ ont été ajoutées sur la ligne Tx_Vcc. Il est construit autour d’un transistor bipolaire PNP 2N3906 et de 3 transistors MOSFET canal N à enrichissement 2N7000. On se reportera utilement à l’article commutation Rx/Tx pour l’examen du schéma et du chronogramme de commutation produit par LTSPICE.

L’antenne est connectée en permanence au récepteur et à l’émetteur. Au repos, le dispositif est en position de réception. A l’entrée, la ligne de commande KEY est connectée à la clef. Cette ligne actionne le transistor 2N3906 monté en commutation. Clef levée, le transistor est coupé, c’est la position de réception, la tension Tx_Vcc = 0 (émetteur coupé), RIT actif, No_MUTE  actif . Clef baissée, le transistor conduit, c’est la position d’émission, l’antenne est coupée du récepteur, Tx_Vcc = 12V (émetteur actif), RIT inactif, MUTE actif.

La commutation de l’antenne au récepteur est effectuée par 2 transistors 2N7000 fonctionnant de manière inverse, M1 et M3 figure 2. L’un, M1, est en série sur la ligne d’antenne, l’autre, M3, shunte la ligne d’antenne à la masse. Quand l’un conduit, l’autre est coupé. Ainsi, en réception, le transistor en série laisse passer le signal venant de l’antenne, alors que l’autre transistor est coupé et ne shunte pas le signal. Inversement, en émission, le transistor en série est coupé. Pour palier à toute fuite de signal provenant de l’émetteur, l’autre transistor shunte le résidu de signal vers la masse. C’est un 3ème transistor 2N7000 qui commande l’inversion, M2 figure 2.
En sortie, 3 lignes de commande:

  • Tx_Vcc,
  • RIT (Tx_Line),
  • No_MUTE (Drain de M2).

La ligne Tx_Vcc = 0 ou 12V, commande la mise sous tension des étages de l’émetteur, sauf les étages de puissance qui restent constamment sous tension.
La ligne RIT, commande le transistor 2N7000 qui commute l’action du RIT sur le VFO.
La ligne No_MUTE, commande le transistor 2N7000 qui commute l’amplificateur audio sur le moniteur CW.

Une cellule RC introduit, un retard lors du passage d’émission en réception (voir le chronogramme, ligne Tx_Line).

3. Limiteur à diodes

Deux diodes 1N4148 montées tête-bêche, shuntent  l’entrée, assurent la protection du transistor suivant contre la HF provenant de l’émetteur. Ce procédé est fort bien expliqué ici.

4. Atténuateur

A l’usage, une commande de gain manuelle est fort utile pour atténuer certaines stations trop puissantes. Le dispositif d’atténuation est construit autour d’un commutateur rotatif 2 circuits 6 positions (parce que j’en avais un comme celui-là) et de 5 atténuateurs en PI. Un atténuateur est formé de 3 résistances, une résistance en série, 2 résistances en shunt. Son entrée et sa sortie sont normalisées à 50 Ω.  J’ai utilisé chaque position du commutateur:

  • position 0: 0 dB (pas d’atténuation),
  • position 1: -6dB,
  • position 2: -10dB,
  • position 3: -12dB,
  • position 4: -18dB,
  • position 5: -20dB,

Pour calculer les résistances de chaque atténuateur, vous avez le choix. Qui aime le calcul, voici la formule simple qui part de l’atténuation souhaitée.
Soit un atténuateur
A=1/2 ou
Adb = 20log{1/2} = 20log{2^{-1}} = -20*0,3 = -6dB
Rs résistance d’entrée et de sortie normalisée = 50Ω
Rp résistance shunt = 50(1 + 0,5)/(1 – 0,5 ) = 150Ω
Ri résistance série = 50(1 – 0,5 x 0,5 )/2 x 0,5 = 37,5Ω
Il ne reste plus qu’à utiliser la valeur normalisée la plus proche.
Qui est curieux, voici mon article qui utilise le calculateur LTSPICE.
Qui préfère utiliser un des nombreux calculateurs, en voici un.

Un mot sur la méthode utilisée pour simuler avec LTSPICE l’action du commutateur rotatif de l’atténuateur. La diective table de LTSPICE permet de définir une liste de valeurs munie d’un index.

Variables :

  • Nat : compteur de position du commutateur d’atténuation
  • Rat1 : valeur des résistances shunt de l’atténuateur
  • Rat2 : valeur de la résistance série de l’atténuateur

Directives :

  • .step param Nat 0 5 1 : indique la plage de variation et le pas de progression du compteur Nat
  • .param Rat1=table(Nat, 0, 86k, 1, 150, 2, 100, 3, 82, 4, 68, 5, 56) : Valeurs successives de Rat1
  • .param Rat2=table(Nat, 0, 57m, 1, 39, 2, 68, 3, 100, 4, 180, 5, 270)  : Valeurs successives de Rat2 avec table(Nom_index, index i, valeur(i), index i+1, valeur(i+1), …)

Algorithme

LTSPICE développe la boucle de programme qui pourrait ressembler à cela :

Nat=0 : initialiser l’ index
Début :
Résistance R6 = Rat1(Nat) = 86k
Résistance R7 = Rat1(Nat) = 86k
Résistance R8 = Rat2(Nat) = 57m
Calculs
Tracé des graphes, …
Nat = Nat+1 : incrémenter l’index du pas de progression
Si Nat <= 5 aller à Début : fin de boucle?
Fin

Remarque, la valeur 0dB qui représente l’absence d’atténuation est portée par les valeurs 86k et 57m qui donnent -1mdB, une valeur infime . En effet, LTSPICE oblige à faire R>0 (résistance non nulle) sous peine d’erreur.

La figure 3 ci-dessous montre le graphe de la résistance d’entrée et celui de l’atténuation en mode réception. La résistance d’entrée se situe autour de 50Ω @ 14MHz. L’atténuation s’étend de -1.8dB à -23dB. La figure 4 représente les mêmes graphes en mode émission. L’atténuation s’étend de -38dB à -60dB.

Le graphe du haut montre l’impédance représentée comme la somme d’une partie réelle et une partie imaginaire  : Z = R +jX.
Le graphe du centre montre le module
delim{|}Z{|} =sqrt{R^2 + X^2}
Ainsi en réception, atténuateur = 0dB @14MHz,  Z = 39 – j34 et |Z| = 51Ω.
-j34 représente la réactance capacitive d’un condensateur de 334pF @14MHz.

Figure 3 - Graphe de la résistance d'entrée et de l'atténuation en réception

Figure 3 – Graphe de la résistance d’entrée et de l’atténuation en réception

Figure 4 - Graphe de la résistance d'entrée et de l'atténuation en émission

Figure 4 – Graphe de la résistance d’entrée et de l’atténuation en émission

Download  Télécharger les fichiers de simulation LTspice et tous les schémas.

5. Filtre passe bande

J’ai utilisé Ansoft Designer SV version 2.2.0. C’est une version limitée pour l’éducation et libre, de ce fameux logiciel. Il offre de nombreuses possibilités pour l’amateur. Si vous voulez un tutoriel en voici un excellent, celui de Gunthard Kraus. Un vrai régal!

Figure 5 - Ansoft designer SV - choix du filtre

Figure 5 – Ansoft designer SV – choix du filtre

Dans le menu Project, choisir Insert Filter Design. Choisir le type de filtre. J’ai choisi Bandpass, Coupled resonator, Chebyshev, Ideal, Capacitiveliy coupled , figure 5 ci-dessus. Dans la fenêtre suivante figure 6, entrer les paramètres du filtre, l’ordre, la fréquence centrale, la largeur de bande (le logiciel calcule lui-même les fréquences fp1 et fp2), les résistances d’entrée et de sortie, une valeur de L réaliste et compatible avec le tore que vous souhaitez utiliser.

Figure 6 - Ansoft designer - Paramètres du filtre

Figure 6 – Ansoft designer – Paramètres du filtre

En passant à la fenêtre suivante vous obtenez le filtre. Si les valeurs vous conviennent, cliquez sur Terminer, sinon cliquez sur Back et modifiez.

Figure 7 - Ansoft designer - Filtre terminé

Figure 7 – Ansoft designer – Filtre terminé

En pratique, les inductances L=484nH seront obtenues en bobinant 11 tours de fil de 1mm (parce que j’en ai récupéré dans une vieille alimentation HS de PC) sur tore poudre de fer T50-6 (Al = 4nH/n2). Le calcul est simple n = √(484/4) = 11. Mini Tore calculateur de Wilfried Burmeister DL5SWB  ou encore Dieter Gentzow W8DIZ le font pour vous. Les condensateurs de 190pF sont obtenus en mettant en parallèle un
condensateur de 150pF et un ajustable de 60pF qui permettra de régler le filtre.

Le filtre soumis à LTSPICE fait aussi bonne figure ci-dessous.

Figure 8 - Filtre soumis à LTSPICE

Figure 8 – Filtre soumis à LTSPICE

Download  Télécharger les fichiers de simulation LTspice et tous les schémas.

Figure 9 - Amplificateur RF

Figure 9 – Amplificateur RF

6. Amplificateur RF

Cahier des charges

Amplificateur émetteur commun à transistor VHF UHF NPN MPSH10 : Gain β maxi = 60 à Ic= 4.0 mA, Vce= 10V.
Fréquence : bande des 14MHz.
Gain le l’étage limité à 15 dB maximum.
Alimentation: 13,8V régulé (celle du transceiver).

Calcul des éléments du circuit

Le transistor, figure 9, est monté en émetteur commun avec résistance d’émetteur Re1+Re, en partie découplée. Re1 non découplée diminue le gain. Sa polarisation en tension est obtenue par la résistance de base Rb prise après la résistance de collecteur Rc régulant ainsi le courant. La résistance de collecteur Rc=51Ω  fixe essentiellement la résistance de sortie.

Dans ces conditions on pose et on calcule :
Tension d’alimentation Vcc = 12V
Courant de collecteur de repos Ic = 7mA
Tension de collecteur Vc = 12V – (7mA * 51Ω) = 11.6V
Tension Vce = 9.6V ce qui donne tension d’émetteur Ve = 2V
Résistance d’émetteur Re1+Re = 2V/0.007mA = 285Ω,  j’opte pour les valeurs normalisée Re1=4.7Ω et Re=270Ω
Tension de base Vb = Ve + Vbe = 2V + 0,7V = 2,7V
Tension Vcb = 9V  et Ib=Ic/39 = 0.179mA et Rb=9/0.179 = 50KΩ,  j’opte pour la valeur normalisée Rb=47KΩ
La valeur 39 = BetaDC obtenue avec le paramètre du gain BF=60 et le courant Ib est fournie dans le fichier log par LTSPICE. La figure 10 montre comment on peut obtenir avec LTSPICE la courbe de variation du gain β en fonction de Ib et Vce.

Note: la directive ako de LTSPICE permet de redéfinir le modèle du transistor et de changer ses paramètres (voir schéma).

Figure 10 - Graphe du gain B en fonction de Ib et Vce

Figure 10 – Graphe du gain B en fonction de Ib et Vce

Analyse en régime continu

La figure 11 indique les valeurs des courants et tension du circuit calculés par LTSPICE.

Figure 11 - LTSPICE analyse en régime continu

Figure 11 – LTSPICE analyse en régime continu

Analyse en régime variable – Graphe de la résistance de sortie

La figure 12 montre que la résistance de sortie reste autour de 50Ω dans la bande qui nous intéresse.

Figure 12 - LTSPICE graphe de la résistance de sortie

Figure 12 – LTSPICE graphe de la résistance de sortie

Analyse en régime variable – Graphe de la résistance d’entrée

La figure 13 montre la résistance d’entrée en fonction de la fréquence, selon 2 valeurs du paramètre BF. On note une petite variation: Re=280Ω @14MHz si BF=60. Re=310Ω @14MHz si BF=100.

Figure 13 - LTSPICE graphe de la résistance d'entrée en fonction de fréquence

Figure 13 – LTSPICE graphe de la résistance d’entrée en fonction de fréquence

Analyse en régime variable – Graphe des paramètres S en fonction de  la fréquence

Le filtre passe bande est associé à l’amplificateur. Le graphe du bas, figure 14, montre que le gain S21 se situe autour de 15db@14MHz. L »analyse est faite avec BF=60 et BF=100. On ne constate pratiquement pas de différence. Le graphe du haut montre les facteurs de stabilité (Rollett stability factor). Pour obtenir kfactor et B1 il faut mettre dans le fichier plot.defs, les 2 fonctions ci-dessous. Pour ce faire, dans la fenêtre active de LTSPICE, placer vous sur le graphe obtenu (fichier raw), dans le menu Plot Settings, choisir Edit Plot Defs File, copier, coller les formules, fermer la fenêtre, quitter LTSPICE pour que les nouvelles fonctions soient prises en compte.

.func kfactor (S11,S21,S12,S22) {(1-abs(S11(v2))*abs(S11(v2))-abs(S22(v2))*(S22(v2))+abs(S11(v2)*S22(v2)-S12(v2)*S21(v2))*abs(S11(v2)*S22(v2)-S12(v2)*S21(v2)))/(2*abs(S12(v2))*abs(S21(v2)))}    

.func B1 (S11,S22) { 1 – abs(S11(v2))**2 – abs(S22(v2))**2 – {sdelta (S11,S21,S12,S22)}**2 }

Figure 13 - LTSPICE graphe des paramètres S

Figure 13 – LTSPICE graphe des paramètres S

Download  Télécharger les fichiers de simulation LTspice et tous les schémas.

Analyse en régime variable – Graphe des tensions et courants en fonction du temps

Le circuit complet du module RF, figure 14, est présenté en mode réception. Le générateur en entrée produit une tension crête de 10mV @50Ω, figurant ainsi un signal de 1uW @14MHz soit -30dBm sur l’antenne. En radio, sur 50 Ohms, dBm = 10*log(P) avec P en milliwatt. Où P = 0.010V*0.010V*1000/(2*50Ω), il vient 10*log(0.001)=-30dBm. Cela peut être calculé simplement avec mini dB calculator de DL5SWB (silent key). En sortie nous obtenons un signal de 25mV crête @50Ω soit 6.3uW.

Figure 14 - LTSPICE graphe des tensions et courants en fonction du temps en réception

Figure 14 – LTSPICE graphe des tensions et courants en fonction du temps en réception

La figure 15, montre le circuit en mode émission. Comme le montre le graphe, le circuit n’est pas étanche à la HF. Pour ce faire je simule l’application d’un signal de 5.8W@14MHz soit une tension crête de 24V @50Ω.

Figure 15 - LTSPICE graphe des tensions et courants en fonction du temps en émission

Figure 15 – LTSPICE graphe des tensions et courants en fonction du temps en émission

Download  Télécharger les fichiers de simulation LTspice et tous les schémas.

7. Réalisation

Il est temps de passer à la pratique. Comme le montre la figure 16, ci-dessous, le circuit tient sur une plaque PCB FR4 pastillée étamée à trous métallisés double face de 5x7x0,16 cm fixée sur le châssis. Les condensateurs du filtre passe-bande sont du type céramique NP0. Il y avait de la place, aussi ai-je préféré les composants traversants aux SMD.

Figure 16 - Vue du module RF

Figure 16 – Vue du module RF

Les résistances de l’atténuateur sont soudées directement sur le commutateur rotatif fixé sur le panneau avant, voir figure 17. La réalisation du châssis fera l’objet d’un article.

Figure 17 - Vue de la face avant

Figure 17 – Vue de la face avant

8. Test

« La théorie, c’est quand on sait tout et que rien ne fonctionne. La pratique, c’est quand tout fonctionne et que personne ne sait pourquoi.  » Albert EINSTEIN (1879-1955).

Instruments de mesure

Oscilloscope HAMEG HM 312-8.
Sonde passive HAMEG HZ36 en position x10, 10MΩ, bande passante 100MHz.
Générateur HF maison 14 MHz.

Dispositif de test

Le générateur injecte sur l’entrée antenne du transceiver un signal Vp=50mV, mesuré à l’oscilloscope, dans la bande des 14MHz .
La sonde mesure le signal de sortie de l’amplificateur RF.

Mesure du signal

Réglage de l’oscilloscope Y = 10mV/cm, X = 0.5us/cm, X-MAGN x5. La figure 18 montre le signal qui a les caractéristiques suivantes: Vp = 3,0cm*10*10mV/cm = 300mV, T = (0,7cm/5)*0,5us/cm = 0,07us, F = 1/T = 14,286MHz.
L’amplification en tension Av=300mV/50mV = 6 soit Adb = 20log6= 15,6db @50Ω.

Figure 18 - Mesure du signal de sortie de l'amplificateur RF

Figure 18 – Mesure du signal de sortie de l’amplificateur RF


Références

LES MONTAGES AMPLIFICATEURS FONDAMENTAUX
A TRANSISTORS BIPOLAIRES – Philippe Roux – IUT de Bordeaux

Ansoft DESIGNER SV 2.0 Tutorial for Beginners using Special Projects by Gunthard Kraus DG8GB
ANSYS

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=3347 0
Transceiver CW 20 m – Commutation Rx/Tx Switching http://www.f8eoz.com/?p=2681 http://www.f8eoz.com/?p=2681#comments Thu, 23 May 2013 13:02:50 +0000 admin http://www.f8eoz.com/?p=2681 Festina lente, voilà plusieurs semaines que je cogite cet article, à lire, à décortiquer des schémas. Après un temps de repos laissant se décanter les idées, j’entame ce sujet passionnant. Toute la difficulté à appréhender le dispositif de commutation vient de sa dispersion dans le schéma électronique. Dispersion inhérente aux fonctions à commuter : RIT qui agit sur le VFO, MUTE qui agit sur l’amplification audio, QSK qui agit sur l’entrée du transceiver, interrupteur ON/OFF qui met sous  tension l’émetteur. Mon but consiste à rassembler en un seul chapitre, à synthétiser  l’ensemble du dispositif.

1. Description générale

Comme le montre le schéma fonctionnel, j’ai opté pour la commutation électronique. Le manipulateur ou clef reste le seul élément de commutation mécanique utilisé pour initier la commutation électronique. La clef a 2 positions : OFF au repos et ON quand on appuie dessus. Ces 2 événements déclencheurs ont pour effet de commuter les différentes fonctions du dispositif au moyen de transistors.

Pour m’appuyer sur une base solide, je suis parti de schémas publiés par KD1JV. La figure 1 ci-dessous, montre le schéma du dispositif de commutation.

Figure 1: Dispositif de commutation Rx/Tx

Figure 1: Dispositif de commutation Rx/Tx

Download  Télécharger les fichiers Kicad.

2. Modélisation de la clef

Fidèle à mon habitude, le dispositif sera passé au banc du simulateur LTspice.

Au début il y a une magnifique clef, peut être comme celle-ci, fabriquée par Jean-Claude F6FCO. Comment la modéliser sous LTspice ?

Un switch commandé par une tension.

La figure 2 montre le circuit.

Figure 2: Circuit modèle de la clef

Figure 2: Circuit modèle de la clef

2.1. Subcircuit

Il est basé sur la NET LIST produite par LTspice. Pour créer un subcircuit on se reportera à cet article.

Paramètres du switch:

  • Ron résistance du switch ON, très faible,
  • Roff résistance du switch OFF, très élevée,
  • e1 est le + de la tension de commande,
  • e2 est le – de la tension de commande,
  • Vt tension d´enclenchement de l´interrupteur,
  • Vh tension d´hystérésis à l´enclenchement, si V(e1, e2) < Vt – Vh/2 alors l´interrupteur est ouvert, si V(e1, e2) > Vt + Vh/2 alors l´interrupteur est fermé.

Paramètres du circuit:

  • duty cycle D = t/T = 0,5,
  • fréquence F = 2.

Avec ces valeurs, le switch sera ON et OFF 2 fois par seconde. La durée du ON = durée du OFF.

* C:\Users\Bernard\Documents\TCW20\tcw20RxTxSwitch\ltc\key.asc
* KEY - F8EOZ - V 17/05/2013 17:00
* KEY SUBCIRCUIT
* CONNECTIONS: 1
*              | 2
*              | |
.SUBCKT KEY    1 2  PARAMS: D=0.5s F=2
*--------------------------
* Key parameters:
* D = duty cycle = t/T
* where:
* t is the duration that the function is active
* T is the period of the function.
* F = frequency = 1/T
*--------------------------
V1 N001 0 PULSE(1 0 0 10n 10n {D/(F)} {1/F})
S1 0 1 N001 0 MonSW
.model MonSw SW(Ron=0.1 Roff = 10meg Vt=0.5 Vh=0.1)
.ENDS

Symbole

La création d’un symbole est expliquée dans cet article. La définition des attributs est différente. Les paramètres du modèle pourront être modifiés au moment de son utilisation dans le modèle, par un simple clic droit sur le symbole. Ceci permet d’utiliser un seul symbole pour des ON/OFF différents. La figure 3 ci-dessous montre exactement comment la fenêtre des attributs doit être remplie pour un fonctionnement correct. La ligne SpiceLine contient les paramètres par défaut de la clé: D=0.5s F=2 qui pourront être modifiés lors de l’utilisation du symbole.
Dans le répertoire ../LTSPICEIV/lib/sym créer le répertoire key qui recevra vos symboles. Enregistrer le symbole key.asy dans ce répertoire.
Le symbole sera relié au subcircuit dans le modèle de simulation par la directive .lib key.sub

Figure 3: attributs du symbole key

Figure 3: attributs du symbole key

La figure 4 ci-dessous montre le dessin du symbole. Ces fichiers sont disponibles en téléchargement.

Figure 4: dessin du symbole key

Figure 4: dessin du symbole key

Download  Télécharger les fichiers LTspice.

3. Bloc Key Switch

3.1. Description

La clef commute un transistor PNP 2N3906. Quand la clef est OFF,  le transistor au cutoff ne conduit pas. Quand la clef est ON, le transistor saturé conduit. On se reportera à l’article sur le tracé de la caractéristique de transfert en tension qu’il est possible d’obtenir en utilisant LTspice. En sortie 2 lignes, TxVcc qui alimente les premiers étages de l’émetteur et commande le bloc QSK Switch, TxLine qui commande les blocs suivants. La résistance fictive Rload simule la charge représentée par les premiers étages de l’émetteur.

3.2. Analyse en régime continu

Le schéma figure 5 ci-dessous, montre le circuit de simulation LTspice.

Figure 5: Bloc Key Switch - Simulation LTspice en régime continu

Figure 5: Bloc Key Switch – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues quand la clef est ON:

V(c1):     13.8          voltage
V(txvcc):  13.7459       voltage
V(txline): 13.3544       voltage
V(key):    0.000586371   voltage
V(b1):     12.9007       voltage
Ic(Q1):    -0.0624945    device_current
Ib(Q1):    -0.00585471   device_current
Ie(Q1):    0.0683492     device_current
I(D1):     1.33544e-005  device_current
I(R3):     1.33544e-005  device_current
I(R2):     8.99258e-006  device_current
I(Rload):  0.0624812     device_current
I(R1):     -0.00586371   device_current
I(V1):     -0.0683582    device_current
Ix(u1:1):  0.00586371    subckt_current

Download  Télécharger les fichiers de simulation LTspice.

3.3. Analyse en régime variable

Le schéma figure 6 ci-dessous, montre le circuit de simulation LTspice.

Figure 6: Bloc Key Switch - Simulation LTspice en régime variable

Figure 6: Bloc Key Switch – Simulation LTspice en régime variable

La figure 7 ci-dessous, montre le graphe des tensions obtenu avec la clef réglée avec ses valeurs par défaut indiquées au paragraphe 2. La cellule R2C2 retarde la montée et la descente de la tension de la base du transistor Q1, retardant la commutation pour atténuer les key clicks. La diode D1 et la cellule R3C3 retardent la coupure de la tension de TxLine.

Figure 7: Bloc Key Switch - Graphe des tensions

Figure 7: Bloc Key Switch – Graphe des tensions

Download  Télécharger les fichiers de simulation LTspice.

4. Bloc QSK Switch

QSK – « Je peux vous entendre au cours de ma transmission » - parfois appelé full break-in, désigne un mode de fonctionnement particulier du code Morse dans lequel le récepteur est activé rapidement pendant les espaces entre les points et les traits, ce qui permet à un autre opérateur d’ interrompre la transmission.

4.1. Description

L’antenne est connectée à la sortie de l’émetteur et à l’entrée du récepteur. En émission, le récepteur doit être isolé de l’antenne. Trois transistors MOSFET canal N 2N7000 s’occupent de cette fonction. M2 relie le récepteur à l’antenne en réception ou l’isole de l’antenne en émission. En raison des courants de fuite de M2, le récepteur n’est pas complètement isolé du signal d’émission, M3 shunte l’entrée du récepteur en émission. La tension de commande TxLine est appliquée à la grille de M3 et à la grille de M1 qui commande M2. Quand la clé est appuyée pour émettre, alors M2 = OFF et M3 = ON. Quand la clé est relâchée pour recevoir, alors M2 = ON et M3 = OFF.

4.2. Analyse en régime continu

Le schéma figure 8 ci-dessous, montre le circuit de simulation LTspice.

Figure 8: Bloc QSK Switch - Simulation LTspice en régime continu

Figure 8: Bloc QSK Switch – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues quand la clef est ON:

V(mute):   0.000263519   voltage
V(txline): 13.3157       voltage
V(txvcc):  13.7089       voltage
V(key):    0.000585177   voltage
V(b1):     12.8745       voltage
V(rxin):   0             voltage
V(ant):    0             voltage
Ic(Q1):    -0.137103     device_current
Ib(Q1):    -0.00584252   device_current
Ie(Q1):    0.142945      device_current
I(D1):     1.33157e-005  device_current
Id(M3):    0             device_current
Ig(M3):    0             device_current
Ib(M3):    0             device_current
Is(M3):    0             device_current
Id(M2):    0             device_current
Ig(M2):    0             device_current
Ib(M2):    0             device_current
Is(M2):    0             device_current
Id(M1):    0.000137997   device_current
Ig(M1):    0             device_current
Ib(M1):    -2.63934e-016 device_current
Is(M1):    -0.000137997  device_current
I(Rload2): 0             device_current
I(R3):     1.33157e-005  device_current
I(R1):     9.25515e-006  device_current
I(Rload):  0.137089      device_current
I(R2):     -0.00585177   device_current
I(R4):     0.000137997   device_current
I(V2):     0             device_current
I(V1):     -0.143092     device_current
Ix(u1:1):  0.00585177    subckt_current

Download  Télécharger les fichiers LTspice.

4.3. Analyse en régime variable

Le schéma figure 9 ci-dessous, montre le circuit de simulation LTspice. Avec cette simulation, j’ai atteint la limite des capacités de calcul et d’affichage de mon ordinateur. J’ai dû en conséquence, limiter la fréquence du générateur d’entrée de l’antenne V2 à 1 MHz et faire preuve de patiente, la simulation dure environ 35 mn.

Figure 9: Bloc QSK Switch - Simulation LTspice en régime variable

Figure 9: Bloc QSK Switch – Simulation LTspice en régime variable

La figure 10 ci-dessous, montre le graphe des tensions obtenu avec la clef réglée avec ses valeurs par défaut indiquées au paragraphe 2. La tension sinusoïdale (V2, F) = (1 V, 1 MHz) est injectée en permanence à l’entrée de l’antenne. Le graphe du haut Vrxin montre que le signal entre dans le récepteur à partir de l’instant où TxLine passe sous la tension de pincement. Ceci correspond aux espaces de temps pendant lesquels il est possible d’entendre un correspondant.
Au même moment Vmute = 13 V = NO_MUTE pendant 50 ms.

Figure 10: Bloc QSK Switch - Graphe des tensions

Figure 10: Bloc QSK Switch – Graphe des tensions

Download  Télécharger les fichiers LTspice.

5. Bloc RIT

Le « Receiver Incremental Tuning » ou RIT  est la capacité de décaler légèrement la fréquence de réception d’un émetteur-récepteur. Utilisé soit délibérément pour avoir une fréquence d’émission différente de la fréquence de réception et être mieux entendu, soit pour compenser un décalage de fréquence.

5.1. Description

Une diode zener 1N4756 est ajoutée en parallèle sur le circuit d’accord du VFO. Le potentiomètre RV1 permet de faire varier sa capacité en réception.

5.2. Analyse en régime continu

Le schéma figure 11 ci-dessous, montre le circuit de simulation LTspice. Pour simplifier, le circuit simule uniquement la variation de tension. Le potentiomètre est représenté par 2 résistances égales RV1 et RV2.

Figure 11: Bloc RIT - Simulation LTspice en régime continu

Figure 11: Bloc RIT – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues quand la clef est ON:

V(c1):     13.8            voltage
V(txvcc):  13.7089         voltage
V(txline): 13.3157         voltage
V(key):    0.000585177     voltage
V(b1):     12.8745         voltage
V(vrita):  3.00356         voltage
V(vritb):  2.99644         voltage
V(vcc6):   6               voltage
V(n001):   3               voltage
V(vrit):   3               voltage
Ic(Q1):    -0.137103       device_current
Ib(Q1):    -0.00584252     device_current
Ie(Q1):    0.142945        device_current
I(C5):     3e-019          device_current
I(C3):     1.33157e-018    device_current
I(C2):     4.24858e-017    device_current
I(C1):     -5.85177e-023   device_current
I(D1):     1.33157e-005    device_current
Id(M4):    0.00299637      device_current
Ig(M4):    0               device_current
Ib(M4):    4.44089e-013    device_current
Is(M4):    -0.00299637     device_current
I(R7):     0               device_current
I(Rv2):    7.12499e-008    device_current
I(Rv1):    7.12499e-008    device_current
I(R6):     0.00299644      device_current
I(R5):     0.00299644      device_current
I(R3):     1.33157e-005    device_current
I(R1):     9.25515e-006    device_current
I(Rload):  0.137089        device_current
I(R2):     -0.00585177     device_current
I(V2):     -0.00299644     device_current
I(V1):     -0.142954       device_current
Ix(u1:1):  0.00585177      subckt_current

Download  Télécharger les fichiers de simulation LTspice.

5.3. Analyse en régime variable

Le schéma figure 12 ci-dessous, montre le circuit de simulation LTspice.

Figure 12: Bloc RIT - Simulation LTspice en régime variable

Figure 12: Bloc RIT – Simulation LTspice en régime variable

La figure 13 ci-dessous, montre le graphe des tensions obtenu avec la clef réglée avec ses valeurs par défaut indiquées au paragraphe 2. La tension inverse de diode peut être réglée entre Vritb = 0 V et Vrita = 6 V en réception. Elle reste fixée au repos, en émission,  à 3 V. Dans ce cas M4 est ON, Vrita = Vrib = Vcc 6V/2 puisque R5 = R6.

Figure 13: Bloc RIT - Graphe des tensions

Figure 13: Bloc RIT – Graphe des tensions

Download  Télécharger les fichiers LTspice.

6. Bloc MUTE

Ce module rend muet le récepteur, mais pas trop! Pendant l’émission il laisse passer faiblement le signal pour avoir une écoute locale ou sidetone.

6.1. Description

Un transistor JFET Canal N 2N3819 commandé par la tension MUTE, fait ce travail. Au repos, clef OFF, la tension de grille = 13 V = NO_MUTE, le transistor conduit. En transmission, clef ON, la tension de grille = 0 V = MUTE, le transistor ne conduit pas, le signal est shunté par la résistance R7 qui laisse passer un signal faible.

6.2. Analyse en régime continu

Le schéma figure 14 ci-dessous, montre le circuit de simulation LTspice. Pour simplifier et avoir une meilleure lisibilité, le signal MUTE est produit par le générateur d’impulsions V3. A la lumière de la simulation du QSK Switch le Duty Cycle est réglé à 50 ms/500 ms = 0,1.

Figure 14: Bloc Mute - Simulation LTspice en régime continu

Figure 14: Bloc Mute – Simulation LTspice en régime continu

Ci-dessous les valeurs des tensions et courants obtenues en réception quand la clef est OFF:

V(vcc):       13.8          voltage
V(j1g):       13.2447       voltage
V(no_mute):   13            voltage
V(j1d):       13.8          voltage
V(j1s):       13.8          voltage
V(audio_amp): 1.38e-014     voltage
V(proddet):   0             voltage
I(C7):        1.38e-018     device_current
I(C6):        -1.32447e-019 device_current
I(C5):        1.38e-018     device_current
I(D2):        5.55306e-007  device_current
Id(J1):       1.93421e-012  device_current
Ig(J1):       -1.93467e-012 device_current
Is(J1):       4.66634e-016  device_current
I(R8):        -1.38e-018    device_current
I(R7):        1.5358e-016   device_current
I(R6):        -5.55304e-007 device_current
I(R5):        1.93506e-012  device_current
I(V3):        5.55306e-007  device_current
I(V2):        1.38e-018     device_current
I(V1):        -5.55306e-007 device_current

Download  Télécharger les fichiers de simulation LTspice.

6.3. Analyse en régime variable

Le schéma figure 15 ci-dessous, montre le circuit de simulation LTspice

Figure 15: Bloc MUTE - Simulation LTspice en régime variable

Figure 15: Bloc MUTE – Simulation LTspice en régime variable

La figure 16 ci-dessous, montre le graphe des tensions. La valeur du condensateur C6 initialement prévue à 100 nF a été ramenée à 10 nF. En effet, avec 100 nF le temps de montée de la tension de grille était trop long pour obtenir un fonctionnement correct.

Figure 16: Bloc MUTE - Graphe des tensions

Figure 16: Bloc MUTE – Graphe des tensions

Download Télécharger les fichiers LTspice.

7. Réalisation – Tests

Après une pause de plusieurs mois contrainte par un problème de santé, je reprends la plume et le fer à souder.

Je simplifie le problème en le divisant en plusieurs étapes. D’abord, je vérifie le bon fonctionnement du récepteur seul en déconnectant l’émetteur, ensuite le fonctionnement de l’émetteur.

7.1. Bloc Key Switch et QSK Switch

Pour des raisons pratiques, j’ai réalisé en même temps ces 2 blocs.

7.1.1. Circuit imprimé

Suivant la méthode modulaire, chaque bloc est câblé séparément sur 2 plaques identiques. La photo 1 ci-dessous, montre les circuits réalisés sur 2 plaques d’époxy cuivrées simple face de 32 x 24 mm selon le mode de fabrication décrit dans les articles précédents. Le circuit tracé est un quadrillage: 2 lignes de 8 mm + 2 lignes de 4 mm, 4 colonnes de 8 mm. Nous obtenons ainsi 2×4 = 8 îlots de 8×8 mm. Les 2 lignes de 4 mm, placées de part et d’autre, servent de rail de masse soudés à la carte mère. Les 2 blocs sont disposés côte à côte près de l’entrée du récepteur. La ligne TxVcc et la ligne Mute ne sont pas encore connectées.

Photo 1: Circuit imprimé des blocs Key Switch et QSK Switch

Photo 1: Circuit imprimé des blocs Key Switch et QSK Switch

7.1.2. Test

Le test que je me propose de faire ici est simple:

  • s’assurer que le récepteur fonctionne correctement après l’insertion dans le circuit des blocs Key Switch et QSK Switch.
  • s’assurer que le récepteur est isolé de l’antenne en mode émission.

Pour ce faire:

  • toute la chaîne d’émission est mise hors tension: oscillateur, mélangeur, pré-driver, driver,
  • l’antenne est connectée à fiche BNC,
  • le récepteur est calé sur une station en train d’émettre.

Je vérifie que le récepteur fonctionne comme avant l’insertion des 2 blocs. Un simple bout de fil volant simule la clé et sert à mettre ou non l’entrée Key In à la masse (voir photo 1 ci-dessus). Je vérifie que la réception est coupée ou non.

7.2. Bloc Mute

7.2.1. Circuit imprimé

Cette fois j’ai un peu modifié ma méthode de fabrication. A l’exception du transistor tous les composants sont des CMS ou SMD 1206 ou 0805. J’obtiens un circuit plus compact et plus clair. Le circuit est toujours composé d’îlots identiques juxtaposés. La taille des îlots a été réduite à 6×6 mm. Un ou plusieurs îlots pouvant être réunis pour n’en former qu’un seul. Seul les îlots utiles sont gravés ce qui rend un peu plus compliquée la gravure. Un espace de 4mm environ est réservé pour la masse tout autour du circuit. Mieux qu’un long discours, la photo 2 ci-dessous, montre le circuit réalisé sur 1 plaques d’époxy cuivrée simple face de 32 x 24 mm. Cette plaque a été enduite totalement au feutre noir non effaçable. Le circuit a été gravé avec une pointe à tracer puis plongé dans un dé à coudre de perchlorure de fer. Le circuit est ensuite étamé à chaud. Nous obtenons ainsi un tracé fin qui permet de souder sans problème les minuscules composants. Les 2 lignes de 4 mm, placées de part et d’autre, servent de rail de masse soudés à la carte mère. La ligne NO_MUTE n’est pas encore connectée.

Photo 2: Circuit imprimé du bloc Mute

Photo 2: Circuit imprimé du bloc Mute

7.2.2. Test

Le test que je me propose de faire consiste à:

  • s’assurer que le récepteur fonctionne correctement sans Mute,
  • s’assurer que le signal audio du récepteur est très faible en position Mute.

Pour ce faire:

  • le bloc QSK est déconnecté,
  • l’antenne est connectée à fiche BNC, relié directement au filtre passe-bande sans passer par le bloc QSK qui est shunté,
  • Une charge fictive de 50 Ω est reliée à la sortie du driver du PA qui n’est pas relié à l’antenne pour ne pas polluer l’éther,
  • la ligne NO_MUTE n’est pas connectée (en l’air),
  • le bloc Mute est connecté à la carte mère, masse et Vcc,
  • le récepteur est calé sur une station en train d’émettre.

Surprise! Ce petit circuit m’a donné beaucoup de fil à retordre. Seul un bourdonnement vibrait dans le casque. Je changeais tous les composants du circuit et remplaçais le 2N3819 par un MPF102. Miracle! Le récepteur fonctionne. Etait-ce un composant défectueux ? Je ne sais pas. Un petit bout de fil à la main je connecte l’entrée NO_MUTE – active au niveau bas – du circuit à la masse, je constate que la réception est fortement affaiblie. Le circuit fait bien son travail! Au passage je suis étonné de la qualité de ce premier petit récepteur. Les essais ont été réalisés le samedi 19 octobre 2013 entre 19h00 et 20h45 heure locale entre 14 et 14, 050 Mhz. Une foule de stations arrive dans les écouteurs : Allemagne, Lithuanie, Bulgarie, Russie et à mon grand étonnement je capte un CQ de K2NV du NYQP New York State QSO Party sur 14,047456Mhz. Mon antenne est un dipôle taillée pour le 20m mais pour l’instant placée provisoirement à l’étage du QTH, les 2 branches du dipôle se frayant un passage là où elles peuvent!

7.3. Bloc RIT

7.3.1. Circuit imprimé

Méthode identique au bloc Mute. Cette fois pour étamer le circuit, j’ai utilisé la pâte à étamer Castotin sp 5423 acheté dans un magasin de bricolage. La pâte est étalée à l’aide d’un pinceau sur le circuit. Inutile d’en mettre beaucoup. Elle est chauffée avec un décapeur thermique. Ne pas chauffer trop longtemps. Dès que le circuit est couvert, arrêter. La photo 3 ci-dessous, montre le circuit réalisé sur 1 plaque d’époxy cuivrée simple face de 32 x 26 mm.  On remarque que la finesse du tracé permet de souder les minuscules composants CMS 0805 entre chaque îlot. Le bloc est placé à côté du VFO. La ligne Vcc 6V est reliée au VFO et la ligne TxLine au bloc Key Switch.

Photo 3: Circuit imprimé du bloc RIT

Photo 3: Circuit imprimé du bloc RIT

7.2.2. Test

Le test que je me propose de faire consiste observer le décalage de fréquence sur l’afficheur du fréquencemètre quand on manipule la clé.

Pour ce faire tous les blocs de commutation sont connectés:

  • le bloc QSK est connecté,
  • l’antenne est connectée à fiche BNC,
  • Une charge fictive de 50 Ω est reliée à la sortie du driver du PA qui n’est pas relié à l’antenne pour ne pas polluer l’éther,
  • la ligne NO_MUTE est connectée,
  • le bloc Mute est connecté à la carte mère, masse et Vcc,
  • le récepteur est calé sur une fréquence dans la bande 20m.

Un petit bout de fil à la main je connecte l’entrée Key du bloc Key Switch à la masse. Je constate en réception que la fréquence est décalée et que le potentiomètre permet de régler le décalage.

Références
The ADC-40 All Discrete Component transceiver Revised 6-23-09 – Steven WEBER  KD1JV

The NADC A CW rig using Nearly All Discrete Components – Steven WEBER  KD1JV
What_Causes_Clicks? by Tom Rauch W8JI
N5ESE’s Outboard T/R Switch

Index des articles de la catégorie Transceiver

]]>
http://www.f8eoz.com/?feed=rss2&p=2681 1